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An EWMA chart for high dimensional process with multi-class 
out-of-control information via random forest learning
Mingze Suna,b, Lei Qiana,c, Amitava Mukherjeed and Dongdong Xianga

aKLATASDS-MOE, School of Statistics, East China Normal University, Shanghai, China; bTsinghua Shenzhen 
International Graduate School, Tsinghua-Berkeley Shenzhen Institute, China; cCenter for Data Science, Peking 
University, Beijing, China; dProduction, Operations and Decision Sciences Area, XLRI-Xavier School of Management, 
Jamshedpur, India

ABSTRACT
Modern manufacturing and quality monitoring involve multi-class out-of- 
control (OOC) information from the training sample. It is essential to use 
such information during online monitoring of data streams from complex 
processes. In this paper, a monitoring framework is designed by combin-
ing the random forest technique with the exponentially weighted moving 
average method for monitoring complex processes with multi-class OOC 
information. To be specific, a process surveillance technique in the form of 
a control chart is proposed based on the probability that the online data is 
classified as an in-control (IC) sample, and the control chart triggers an 
alarm when the probability is lower than the control limit. Our numerical 
findings based on the Monte–Carlo simulation show that the proposed 
control chart performs more effectively than its competitors under various 
distributions and data types, especially for high-dimensional cases when 
multi-class OOC information is known in advance. Moreover, the proposed 
method is illustrated with an application using the data related to the hard 
disk manufacturing processes.
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1 Introduction

Because of the rapid growth of the manufacturing sectors in the Industry 4.0 era, the necessity for 
monitoring high-precision product quality and related production processes is gradually increasing. 
Over the years, surveillance of item quality in complex manufacturing systems has become an 
increasingly challenging issue to ensure stable and excellent output quality. A shift in the location or 
scale parameters in the process distribution of the quality characteristics can be detected using 
statistical process monitoring (SPM) tools. An efficient SPM tool can identify a process shift rather 
quickly using statistical methods. In modern industrial production, it is necessary to monitor 
multiple indicators or quality characteristics of the products. Several researchers Hotelling (1947), 
Woodall and Ncube (1985) and Lowry et al. (1992) proposed various multivariate Shewhart-type, 
multivariate cumulative sum (MCUSUM)-type, and multivariate exponentially weighted moving 
average control charts (MEWMA) to address multivariate SPM (MSPM) problems. Zou and Qiu 
(2009) designed a LASSO-based multivariate exponentially weighted moving average variable 
selection control chart. Mehmood et al. (2020) used bivariate ranked set schemes to develop an 
MCUSUM control chart, which can quickly monitor small variations in the process mean vector. 
Sabahno et al., 2020 designed an adaptive MSPM scheme that monitors both the mean and the 
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covariance matrix of a multivariate normal distribution. F. Xie et al. (2022) proposed the one-sided 
adaptive truncated exponentially weighted moving average scheme. Bersimis et al., 2007 gave 
a comprehensive overview of MSPM schemes. Interested readers may also see the book by Qiu,  
2013. In recent years, MSPM schemes have been widely used in industrial manufacturing, medical 
services, and other fields. This paper proposes an MSPM scheme using the random forest learner to 
monitor the complex high-dimensional processes where a process shift may lead to a mixture 
distribution of differently clustered data. In the context of process monitoring, for more details on 
applications of random forest classifications in profile classification, we refer to Alshraideh et al. 
(2020).

In practice, quality-related datasets in large-scale manufacturing are often very complex. This 
article is motivated by a complex process monitoring in the Hard Disk Drive Monitoring System 
(HDDMS) Zhang et al. (2015). The hard disk drive is an electromechanical data storage device that 
stores and repossesses digital data, but it often crashes, resulting in the loss of part or even all of the 
stored information. Moreover, recovery of the hard drive is a complex and expensive process. 
Therefore, it is essential to monitor the hard disk performance to determine its real-time condition. 
To this end, we consider the dataset containing four quality attributes of the hard disk performance, 
including some continuous and count variables. For example, reading error rate, seek error rate, 
and power recorded on an hourly basis are continuous variables, while the current pending sector 
count is a categorical variable. The dataset to be monitored is of a mixed type which is not purely 
continuous or purely categorical. Clearly, for this type of data, an assumption of multivariate 
normality is not meaningful. Also, it is difficult to fit any standard multivariate distributions to 
such data. Another characteristic of this process is that it can produce many datasets in a short time. 
This process can generate more than 1 million in-control (IC) profiles in a few weeks, along with 
a large number of out-of-control (OOC) profiles. The historical data contain various OOC profiles, 
which can be divided into a few classes. Using this historical information efficiently for process 
monitoring and improvement is always a challenging problem for engineers.

There are many other examples from different domains, such as the semiconductor manufactur-
ing industry. A dataset related to semiconductor quality is available in the UC Irvine Machine 
Learning Repository, consisting of 1567 observations and 591 variables Mukherjee and Marozzi, 
(2021). The dataset contains several variables that are almost constant, and there are many missing 
values. In some cases, we have zero-inflated data. Obviously, the data do not follow the multivariate 
normal distribution. Fitting some suitable well-known multivariate distribution to this dataset is 
immensely challenging, primarily because of its large dimension and diverse nature of variables. 
Consequently, traditional control charts based on the multivariate normal or other continuous 
distribution may not be ideal. Therefore, it is necessary to establish a control chart that does not use 
any stringent distributional assumption. Similar applications include monitoring the commercial- 
scale cell culture expansion bioreactor in the biopharmaceutical field Tulsyan et al. (2018) and the 
high-dimensional complex process of users’ search terms on social media like Wikipedia Weese 
et al. (2016).

In most multivariate and high-dimensional SPM problems similar to the ones discussed in 
previous paragraphs, the actual process distribution remains unknown. Parametric MEWMA and 
other control charts based on the normality assumptions cannot effectively monitor such processes. 
However, using a large volume of available historical data, the above charting schemes may be 
redesigned by adjusting the control limits via suitable methods. For example, many nonparametric 
SPM schemes are proposed using certain rank-based statistical methods. Interesting papers regard-
ing the above issue have been published by Bakir (2004), Bakir & Reynolds (1979), Graham et al. 
(2011), Qiu & Li (2011), Abbasi et al. (2013), Zhou et al. (2016), Bush et al. (2010), Huwang et al. 
(2019), Chakraborti (2004), Maboudou-Tchao et al. (2022a), Dastoorian & Wells (2021), and Tran 
et al. (2022).

Although these SPM schemes are useful when the process distribution is unknown, most of these 
methods do not consider the complete information from the historical datasets. Usually, during 
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a Phase-I analysis, OOC samples are identified and removed from the historical data. The remain-
ing sample observations form a reference sample and are used as the gold standard. The OOC 
signals obtained during Phase-I analysis with training data are not usually used to identify the 
possible nature of the shifts in the OOC samples. This practice results in the loss of some essential 
OOC information. The historical OOC data may contain multiple shift classes, so the monitored 
data can be considered as mixed distributed. Even with much historical data, it is difficult to 
accurately estimate the data distribution, which also affects the effectiveness and robustness of the 
above control charts.

The increase in the data complexity reduces the usability and effectiveness of the conventional 
SPM schemes. Most traditional charting schemes use only IC samples of historical data for 
benchmarking and ignore information in the OOC samples. The signals may be carefully investi-
gated as some may be false alarms. However, in the semiconductor wafer’s quality monitoring and 
other similar contexts, we often get many OOC signals that are not false alarms and are correctly 
classified as OOC samples. Statistical learning tools may allow us to use historical data, including 
evidence in historical OOC samples, and facilitate online monitoring of complex processes with 
better information. Some researchers designed control charts based on statistical learning. S. Chen 
& Yu (2019) developed a deep recurrent neural network (RNN) model to detect mean shifts in 
autocorrelated processes. Wang et al. (2019) used a differential evolution algorithm to determine 
the optimal parameter selection of the support vector machine (SVM) classifiers and built a single- 
side control graph based on SVMs to monitor multiple quality characteristics. X. Xie & Qiu (2022) 
used certain existing machine learning control charts together with a recursive data de-correlation 
procedure. Lee et al. (2022) proposed a control chart using the support vector machine under 
gamma distribution. Maboudou-Tchao et al. (2022b) compared penalized methods and support 
vector methods for Shewhart-type and accumulative-type control charts. To obtain more informa-
tion about other control charts based on traditional machine learning, please refer to Huang et al. 
(2022), Ding et al. (2023), and Chan et al. (2023).

Zhang et al. (2015) creatively proposed to combine SVMs with EWMA sequence and make full 
use of historical IC data and OOC data information to construct the SVMEWMA control chart. It 
used the improved SVMs classifier to develop the monitoring scheme and achieved good perfor-
mances in monitoring complex processes. At present, the control charts designed based on 
statistical learning mainly use traditional machine learning methods. While technique like SVMs 
is primarily applied to the dichotomy problem, which has certain limitations for monitoring 
problems with various types of possible OOC conditions. The traditional classifiers usually need 
to carry out feature decomposition when processing high-dimensional data, which significantly 
increases the computational complexity. Simultaneously, with the increase in data dimensions and 
classification numbers, the monitoring effect of control charts based on traditional classifiers may 
also decrease significantly (Zhang et al. 2015).

Based on the discussion above, it is desirable to develop a new monitoring scheme that applies 
even to complex, high-dimensional data with unknown distribution under possible multiple 
categories of shifts using the complete information from the historical data. This paper introduces 
the random forest ensemble classifier and EWMA sequence to construct the RFEWMA control 
chart. The random forest model does not need feature selection when processing high-dimensional 
data with multiple classes. Consequently, such a classifier is highly efficient for complex processes. 
The RFEWMA control chart can effectively solve complex process monitoring using the random 
forest model, which is simple and highly precise for different data types. By calculating the voting 
situation of the decision trees in the random forest, the monitoring of the high-dimensional and 
multi-classified data is realized. The control chart is proved to have good performance through 
numerical study. Although there have been some studies using the random forest to monitor profile 
signals, the OOC information in the current study is only binary and the dimension is small 
(Alshraideh et al. (2020)) [35]. We emphasize the managerial implication of the proposed method 
in improving total quality management in the Industry 4.0 era, where high-dimensional processes 
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are more common than ever and require more sophisticated tools and techniques. Most classical 
process monitoring practices ignore possible out-of-control (OOC) situations leading to multi-class 
OOC conditions. Proper knowledge of the OOC class makes corrective actions easier, and the 
proposed techniques may play a vital role. Our control chart combines the random forest model 
with the EMWA sequence to realize efficient monitoring of high-dimensional and multi- 
classification data.

The remainder of this paper is organized as follows: the random forest theory is briefly reviewed 
in Section 2. The statistical framework of the problem is discussed, and the implementation design 
of the proposed control chart is described in detail in Section 3. The numerical performance of the 
proposed scheme is thoroughly investigated in Section 4. In Section 5, the usability of the proposed 
scheme is illustrated using an example based on real data. Finally, Section 6 concludes with some 
discussions on future research directions.

2 A review of random forest

In this section, the theoretical framework of random forest classification is briefly described. 
According to the description of the theory, the solution to the corresponding problem can be given.

The nomenclature table

To better comprehend the notations and symbols, we provide a nomenclature table in this section. 
See Table 1 for details.

2.2 The theoretical framework of random forest

The random forest technique (Ho (1998)) is essentially an ensemble learning method for regression, 
classification, and other tasks that build an assembly of decision trees using a training sample that 
leads to the appropriate classifications of data or offers suitable predictors of one or more 
characteristics of the individual trees. Ensemble learning can accomplish the learning task by 
constructing and combining multiple learners, and the performance of a single learner with 
a weak function can be significantly improved through an ensemble. Current ensemble learning 
can be divided into two categories, namely, strong dependence relationship between individuals 
and weak strong dependence relationship between individuals. The former is represented by 
Boosting, while the latter is bootstrap aggregating or Bagging. A random forest constructs 
a Bagging ensemble based on decision trees and introduces random attribute selection during the 
training process Breiman (2001). The random forest model generates decision trees by randomizing 
features (columns) and data (rows). There is no correlation between each decision tree. When there 
is a new input sample, each decision tree in the forest classifies (votes), respectively, and finally 

Table 1. The nomenclature table.

Symbol Symbol interpretation

P characteristic dimension
k class number
T number of decision trees
c category
h decision tree
F0 IC distribution
Fj OOC distribution
Ei MEWMA statistics
L the control limit
λ the smoothing parameter
M pieces of the input data to construct the new MEWMA sequence
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summarises the result of the decision trees, the category with the most votes is the prediction result 
of the random forest model.

In the random forest model, N pieces of training data xi and their corresponding label yi 
are given. For each decision tree, N training samples are randomly drawn from the training 
sample as the training set of the tree. We assume that the characteristic dimension of each 
sample is P, specify a constant p < P, randomly select P features from P ones, and select the 
optimal feature from the P features every time the decision tree is divided, the random 
forest model is obtained by training finally. For a (kþ 1)-classification task, it is assumed 
that there are a total of T decision trees in the random forest model. For each input x, the 
corresponding label y should be selected from the category c0; c1; . . . ; ckf g by the 
ht ðt ¼ 1; 2; . . . ;TÞ decision tree, and here the method of plurality voting is used to 
determine the final result. We express the predicted output of ht on sample x as a (kþ 1)- 
dimensional vector h0

t ðxÞ; h1
t ðxÞ; . . . ;hk

t ðxÞ
� �

, where hj
tðxÞ is the output of ht on cj category, 

and hj
tðxÞ belongs to f0; 1g. If ht predicts sample x as category cj, the value of hj

tðxÞ is 1, 
otherwise is 0: Then the predictive classification of x is: 

HðxÞ ¼ c
argmax

j

PT

t¼1
hj

tðxÞ
: (1) 

When the random forest model gives the classification result, we can also calculate the probability 
that x is divided into the cj class: 

P x 2 cj
� �

¼

PT
t¼1 hj

tðxÞ
T

: (2) 

This also provides the basis for constructing the monitoring statistics later.

2.3 Properties of random forest

Unlike the neural network and other conventional methods, which require a large amount of 
computation, the random forest model involves a lesser computational load for the decision tree 
and improves prediction accuracy. Random forest is not sensitive to multivariate collinearity, and 
its results are robust to both missing data and unbalanced data, so it can reasonably predict the 
effects of up to thousands of explanatory variables.

The efficiency of the random forest model is mainly determined by calculating the out-of 
-bag error (OOB error). Since only part of the samples is used in the training of each 
decision tree, the remaining samples can be used as a validation set to estimate the 
generalization performance of the model Breiman (1996) and Wolpert & Macready, 
(1999). Let D be the sample set for training, Dt is the sample set, in which the sample is 
used for training in the decision tree ht , and let HoobðxÞ represents the out-of-bag prediction 
of a sample x, that is, for each input x, consider the predicted results of the decision tree 
training without x: 

HoobðxÞ ¼ c
argmax

j

PT

t¼1
hj

tðxÞ�I x‚Dtð Þ
; (3) 

where Ið�Þ denotes the sign function. Then the out-of-bag estimation of the generalization error of 
the random forest model is: 

εoob ¼ 1=jDj �
X

ðx;yÞ2D

I HoobðxÞ�y
� �

: (4) 

The selection of parameters of the random forest model is mainly to minimize the εoob (out-of-bag 
error), which will be discussed in the following Section.
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3 A monitoring framework for complex processes

This section formalizes the problem, introduces our control chart framework for complex processes 
in detail, and explains how to determine the control limit L when the process distribution is 
unknown. Finally, we discuss the choice of some design parameters for the control chart.

3.1 Problem description

In the monitoring of a complex process, we can often observe a large volume of historical 
observations, say, x1;x2; . . . ;xnf g during Phase-I. Each of the sample observations may include 
information on multiple characteristics and could be high-dimensional. Here, some of the char-
acteristics may be measured on a continuous scale, and the rest could be categorical. In this context, 
we assume that each observation xi ði ¼ 1; 2 . . . ; nÞ is p-dimensional ðp � 1Þ. In a large number of 
historical observations, IC and OOC observations may be mixed. It is necessary to separate OOC 
observations from the IC samples through appropriate Phase-I analysis. Classical statistical Phase-I 
analysis tools are not suitable when some variables are continuous and some discrete in 
a multivariate and high-dimensional set-up. However, the problem may be addressed using 
machine learning tools, such as classification technology. Note that, the OOC observations may 
be divided into k different classes ðk � 1Þ. Let us denote F0 as the IC distribution, and Fj as the 
distribution of the jth class under OOC. We assume that the online surveillance starts from ðnþ 1Þth 

and a possible process shift occurs at the ðnþmþ 1Þth stage. Precisely, we consider a change-point 
model for the online monitoring problem: 

xi,
F0 x; μ0
� �

; x ¼ nþ 1; . . . ; nþm;
Fj x; μj

� �
; x ¼ nþmþ 1; . . .

(

(5) 

where F�ð�Þ is the unknown process distribution. μ0 and μj are the parameters of interest during the 
IC and the jth OOC states, respectively, and μ0�μj; for some j ¼ 1; 2; . . . ; k:

There is no requirement to know the functional forms of the IC and OOC process distributions 
in our monitoring framework, so F�ð�Þ is unknown. Meanwhile, in the actual monitoring process, 
the online data median of the OOC classes, μj’s, are also unknown. We expect to detect and classify 
the shift quickly in the online data with the help of the historical OOC data acquired from Phase-I.

3.2 The monitoring framework

Our monitoring framework consists of Phase-I and Phase-II procedures. In Phase-I, a large amount 
of raw data can be clustered by some traditional Phase-I methods. Then, we use the random forest 
model to construct the RFEWMA control chart to monitor the online data in Phase-II. OOC 
observations are separated from the raw data in the traditional Phase-I monitoring framework, and 
IC parameters are estimated using the IC samples. As discussed earlier, different causes may 
produce different shifts. The OOC data often contain more than one type of shift, and we intend 
to capture different kinds of OOC shifts in our monitoring framework. Therefore, after separating 
the IC data and OOC samples through traditional classification methods, we repeatedly use 
clustering and other ways to divide OOC data into k different subcategories, and each separate 
subcategory contains a different shift type. Subsequently, we use the information about IC samples 
and partitions of OOC samples into k diverse classes during Phase-II monitoring. In this paper, the 
research emphasis for Phase-II of online data monitoring, and methods in Phase-I here are not 
described in detail.

In Phase-II, we assume that sufficient historical IC data and OOC samples are already available 
a-priori. For multiple shift classes in the data, it is difficult to effectively monitor such processes by 
estimating the data distribution. So we apply the random forest model introduced above. The final 
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classification result of the random forest is determined by counting the voting result of each 
decision tree, which provides great convenience for the design of our monitoring statistics. For 
each input data, the decision trees in the random forest determine the data classification either as 
the IC class or any one of the k OOC class and vote, respectively. Let the voting result of the tth 

decision tree be ht , then the probability that the input data x belongs to the jth type is shown in 
formula 2.

The specific monitoring process in Phase-II is explained in detail. Suppose we have obtained a set 
of IC samples and OOC observations of k different shift types in Phase-I. The above data are used to 
establish a random forest model. To make full use of historical data information and make the 
control chart more sensitive to the small shift, we use the MEWMA-type scheme. Due to a large 
amount of data, we have made some adjustments to the sequence construction to prevent the 
MEWMA sequence from tending to a fixed value. We assume that the input data is xi ði ¼ 1; . . .Þ, 
we only use the input data and the first M pieces of the input data to construct the new MEWMA 
sequence. We define the sequence: 

Sm;l ¼ λxmþl� 1 þ ð1 � λÞSm;l� 1; m � 1; 1 � l � M (6) 

Ei ¼
S1;i; 1 � i � M

Si� M;M; i > M

�

(7) 

where the initial vector Sm;0 ðj ¼ 1; . . .Þ is defined as the mean vector estimated from the historical 
IC samples, and Eif g values form a sequence of the MEWMA statistics. Using this MEWMA 
sequence data, we developed a random forest model to calculate the probability that Ei belongs to 
the IC distribution. The higher the probability, the more we tend to consider the system in 
a controlled state, and the lower the probability, the more we tend to consider it in an uncontrolled 
state. We recommend triggering an alarm when the probability falls below a certain threshold L, 
which serves as the control limit of our RFEWMA control chart. 

P Ei 2 IC Datað Þ � L (8) 

The control limit L is mainly determined by Monte Carlo simulation, and the corresponding 
method is explained in Subsection 3.2.

The RFEWMA control chart requires us to consider two additional parameters, namely λ and M. 
The value of λ should be chosen appropriately depending on the specific monitoring problem, while 
N. Chen et al. (2016) recommend that M should range between 15 and 30 but not exceed a certain 
value. In our study, we found M ¼ 20 to be optimal for the random forest and MEWMA chart. 
These details are elaborated in Subsection 3.3.

3.3 Determination of the control limit L

Our proposed RFEWMA scheme does not depend on the distribution of the process data, and 
the process distribution is also unknown a-priori. Therefore, the traditional method of calculat-
ing the control limit using the distribution function of the pivot is not applicable. In the current 
study, we recommend using a search algorithm-based Monte Carlo simulation to determine the 
control limit. Assume that we have collected many IC data and OOC data in Phase-I. First, 
a random forest model is trained with a set of IC data and OOC data. Then, for fixed L, a piece 
of data xi is randomly chosen from this IC dataset at each time, the MEWMA sequence stated 
previously is applied to the random forest model until the corresponding probabilistic output 
P Ei 2 IC Datað Þ is smaller than L. We repeatedly choose samples from the IC dataset and 
calculate the corresponding ARL0. The average ARL0 calculated above is the corresponding 
ARL0 under the fixed L. If the attained ARL0 under a certain control limit L is close to the target 
ARL0, then the control limit is obtained. While there is a large difference from the target ARL0, 
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we use the dichotomy to determine the specific control limit L. It can be checked that there is 
a monotonic relationship between the control limit L and ARL0. That is, as the control limit L 
decreases, ARL0 gradually increases. We denote the upper and lower bounds as hl and hu, and 
we set their initial values to 1 and 0. Let L ¼ ðhl þ huÞ=2, and calculate the corresponding ARL0. 
If attained ARL0 < target ARL0, then let hl ¼ ðhl þ huÞ=2 and hu remains unchanged; other-
wise, if attained ARL0 > target ARL0, let hu ¼ ðhl þ huÞ=2 and hl remains the same. Repeat the 
above iteration process and stop iteration when attained ARL0 under a certain L is the same as 
the target ARL0. The specific control limit L of the control charts with different ARL0 can be 
determined by the above method.

3.4 Choice of the design parameters

We first discuss the choice of the smoothing parameter λ of the MEWMA sequence. Note that 
λ 2 ½0; 1� and λ ¼ 1 corresponds to a Shewhart-type scheme. As a rule of thumb, the smaller 
value of λ should be selected for monitoring small shifts, and the relatively higher larger value of 
λ should be selected for monitoring large shifts. The larger λ allows the MEWMA sequence to 
consider more information from the latest sample observations. To choose the value of λ 
properly, one needs to specify a target shift size, which unfortunately is often not known 
a-priori. The numerical study reveals that the value of λ between 0.05 and 0.2 ensures the 
robustness of the proposed scheme in monitoring various complex processes. Details of the 
Monte-Carlo study are deferred to Section 4.

Here, we also need to discuss another parameter, M, which specifies the number of previous 
samples used in the MEWMA statistic. In practical applications, the selection of M should 
consider the size of the sample data and the requirements of the application. In our RFEWMA 
chart, the purpose of constructing this MEWMA sequence is to make full use of the online 
historical data to improve the monitoring performance of the control chart. This means that 
when we construct the monitoring statistics, we need to calculate the probability that these 
MEWMA sequences come from the corresponding IC random forest model. For this purpose, 
we need MEWMA sequence data based on IC data and OOC data to train the random forest 
models. Unfortunately, if we have enough historical data on which to construct MEWMA 
sequences, the observed values may eventually tend to be constant, which makes it difficult to 
train appropriate random forest models based on these small differences. The trained models 
are unable to fit the true distribution of data in the application. Therefore, we need to strike 
a balance between monitoring effects and model training. So we should choose a moderate M. 
N. Chen et al. (2016) suggested setting M between 15 and 30, but not too large. Based on our 
empirical results, we recommend setting M to 20, and a detailed discussion on this can be found 
in Section 4.5.

It is also important to correctly specify the parameters of the random forest model. The random 
forest parameters can increase the model’s prediction ability and reduce the time required to train 
the model. We focus on two essential parameters: the maximum number of features that a random 
forest allows a single decision tree to use (mtry) and the number of decision trees in the random 
forest (mtree). An increase in mtry generally gives the model more options to consider on each 
node. However, it reduces the diversity of a single tree and slows down the algorithm by increasing 
mtry Wu et al. (2021). We recommend setting mtry close to the data dimension when monitoring 
small shifts and setting mtry as the positive square root of the data dimension when monitoring 
large shifts. Note that having more subtrees can give the model better performance, but at the same 
time make the code slower and increase the possibility of overfitting. For our control chart, 
however, increasing mtree has little influence on the monitoring effect of the control chart, so 
based on our empirical findings, we recommend setting the number of mtree as 50 � 300. See 
Section 4.5 for a detailed discussion.
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4 Numerical studies

In this section, we discuss various numerical results related to the proposed SPM schemes. We 
compare the efficacy of the proposed RFEWMA scheme with the traditional SPM schemes for 
different data types and distributions and show that the proposed RFEWMA scheme can address 
complex process monitoring problems. The numerical comparison is arranged as follows. In 
Section 3.4, we consider monitoring of continuous processes and sample data simulated from 
continuous distributions for both situations: a single OOC class (k ¼ 1) and multiple OOC classes 
(k > 1) in historical OOC samples. Section 4.1 investigates monitoring the categorical and mixed 
data of single classification and multi-classification in historical OOC samples. In Section 4.2, we 
consider the case where the nature of the shift is different from historical shifts. In Section 4.4, we 
study the possibility of unbalanced training data. We discuss the parameter λ in the MEWMA 
sequence and the choice of critical parameters in the random forest model in Section 4.5. In 
Section 4.6, we explore the sample size required to determine the control limit L. We use Python 
3.6 to implement the simulation. Throughout the simulation, we mainly detect the mean shift and 
use λ ¼ 0:1 in Section 3.4–4.4. Because of the high dimension of the data being considered, both 
ARL0 and ARL1 values conditional on the given IC dataset and OOC dataset are obtained from 5000 
replications of simulations, and the whole process is repeated 100 times. The ARL0 is fixed at 200.

4.1 Monitoring of continuous data

This section focuses on the continuous processes, covering both cases where historical OOC data 
have only one class and multiple classes. We show the better performance of the proposed 
RFEWMA scheme compared to the SVMEWMA scheme Zhang et al. (2015), and the MEWMA 
scheme Lowry et al. (1992) based on Hotelling’s T2 statistic. We choose the multivariate normal and 
multivariate t (denoted by tp;ε) distributions to represent symmetric thin-tailed and heavy-tailed 
processes and the asymmetric multivariate chi-square distribution, denoted by X2

p;ε. If not specified, 
we assume that the mean of the IC process is a null vector and the covariance matrix is the identity 
matrix in all three cases. The parameter ε of the multivariate t distribution and the multivariate chi- 
square distribution is fixed at 5. We use the relative mean index (RMI) as a metric to compare the 
SPM schemes. Small RMI means that the control chart has a quick and robust performance in 
detecting mean changes (Han & Tsung (2006)).  

RMI ¼
1
n
�
Xn

i¼1

ARL1iðTÞ � min ARL1ið Þ

min ARL1ið Þ
(9) 

where ARL1iðTÞ presents the ARL1 value of the T chart under the ith condition, and min ARL1ið Þ

presents the minimum ARL1 value among the considered charts under the ith condition.
For only one class of shift (k ¼ 1) in the training OOC data, we assume that the shift occurs in 

the first dimension of the mean vector. We randomly generate 100,000 IC data and 100,000 OOC 
data, respectively, to construct the RFEWMA chart and the SVMEWMA chart 
N0 ¼ N1 ¼ 100000ð Þ. We assume that the type of shift for the online data is the same as the 

historical shift. In the process of simulating online data monitoring, the first 100 online data are IC 
data, and then the data is turned from in-control to out-of-control. Besides, for the three different 
continuous distributions, we consider the data dimensions p ¼ 6 and p ¼ 10. We calculate ARL1 
and the corresponding standard deviation of the RFEWMA chart, the SVMEWMA chart, and the 
MEWMA chart, respectively, and the specific simulation results are shown in Table 2. First, we 
simulate the situation of the multivariate normal distribution, and it is obvious that the overall 
performance of RFEWMA is better than that of MEWMA and the monitoring effect of RFEWMA 
and SVMEWMA is similar. It can be found that the effect of RFEWMA and SVMEWMA is better 
than that of MEWMA when the shift size is small, and the gap between the three methods is 
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narrowed to a certain extent when the shift size is large. For monitoring of different dimensions, the 
effect of RFEWMA is less affected by the improvement of data dimensions, while the effect of 
MEWMA for higher dimensions is reduced. This indicates that our control chart is robust for 
monitoring the multivariate normal distribution data.

We now investigate the case under non-normal distributions. First, we consider the case of the 
multivariate t distribution with the parameter ε equal to 5. Compared with the normal distribution, 
the efficacy of the MEWMA decreases significantly, especially in the case of small shift size. 
However, the RFEWMA chart still maintains a decent performance for the case of the multivariate 
t distribution. With increasing data dimension, the decrease of MEWMA monitoring effect is 
obvious, while RFEWMA still has a robust monitoring effect. Finally, we consider a multivariate 
skewed chi-square distribution, and the parameter of the multivariate chi-square distribution is still 
chosen as 5. According to the findings of the multivariate t distribution, the overall efficacy of 
RFEWMA is better than that of MEWMA, especially for small shift size, and the effectiveness of 
RFEWMA is almost not affected by the increase in data dimension. When there is only one type of 
shift (k ¼ 1) in the historical OOC data, the efficacy of the SVMEWMA is slightly better than that of 
the RFEWMA scheme.

We now consider a more general situation. We assume that there are shifts of multiple types 
ðk > 1Þ in the historical OOC data, and that the class of the real shift is one of the historical shifts. 
We consider the same three multivariate distributions, namely, normal, t, and chi-square, as before. 
The parameter settings for the training IC set are also the same as the case of k ¼ 1. We randomly 
generate 100,000 IC data and k-classes OOC data. The number of each class of OOC data is 25000; 
that is, N0 ¼ 100000;N11 ¼ N12 ¼ . . . ¼ N1k ¼ 25000ð Þ. The above data is used to design and 
compare the RFEWMA, SVMEWMA and MEWMA schemes. To verify that our control chart is 
suitable for high-dimensional and multi-class situations, we choose k ¼ 2; 4; 6; 8; 10, and 
p ¼ 6; 10; 20; 30; 50; 100. Without loss of generality, we all assume that the magnitude of shifts is 
1 and the shift takes place on only one dimension at a time. See Table 3 for specific simulation 
results.

We observe from Table 3 that the efficacy of the RFEWMA chart is better than that of the 
SVMEWMA chart and the MEWMA chart in the case of multi-classification. When the underlying 
density is multivariate normal, the difference between the three methods is negligible when the data 
dimension p is less than 10. With the increase in the classification number k and the data dimension 
p, the efficacy of the MEWMA scheme gradually decreases, but the effectiveness of the RFEWMA 
scheme is hardly affected and is slightly better than SVMEWMA. For the multivariate t distribution, 
the efficacy of the three methods is reduced compared to that for the multivariate normal distribu-
tion, but the monitoring effect of the MEWMA schemes decreases significantly when p exceeds 6. 
For higher dimensions and more OOC classes, the MEWMA scheme is practically unable to 
effectively monitor the shift. The effectiveness of the SVMEWMA scheme also decreases, but the 

Table 2. Comparison of ARL1 values for multivariate normal data, multivariate t data, and multivariate chi-square data. The SDRL 
value is shown in parentheses.

Normal t ðdf ¼ 5Þ X2 ðdf ¼ 5Þ

p δ RFEWMA SVMEWMA MEWMA RFEWMA SVMEWMA MEWMA RFEWMA SVMEWMA MEWMA

6 0.5 18.5(14.8) 17.5(11.8) 39.2(33.1) 28.6(23.1) 28.3(22.9) 81.0(61.6) 26.9(22.8) 25.6(21.2) 54.5(47.9)
1.0 8.1(4.1) 8.3(4.0) 13.1(6.8) 10.0(5.6) 10.2(6.1) 28.4(20.3) 6.1(3.3) 6.0(3.0) 11.1(6.4)
1.5 6.0(2.3) 5.6(2.2) 8.1(3.1) 6.9(3.0) 7.0(3.2) 13.3(6.0) 5.1(1.6) 3.8(1.5) 4.9(2.0)
2.0 5.6(1.8) 4.5(1.5) 6.0(2.0) 5.9(2.3) 5.4(2.0) 9.5(3.5) 3.1(0.8) 3.1(1.0) 3.2(1.0)

10 0.5 18.9(14.4) 17.5(13.3) 49.2(42.5) 25.7(20.8) 26.0(21.5) 102.9(69.4) 26.3(22.2) 24.0(19.9) 67.8(55.6)
1.0 8.2(4.0) 7.8(3.7) 14.6(7.9) 10.6(5.9) 10.8(6.0) 43.2(35.4) 5.9(2.9) 5.8(3.0) 13.1(8.2)
1.5 5.9(2.3) 5.4(2.2) 8.8(3.5) 7.0(3.1) 7.0(3.2) 18.0(9.8) 4.8(1.7) 3.8(1.5) 5.5(2.3)
2.0 4.8(1.6) .3(1.5) 6.7(2.2) 5.7(2.2) 5.4(2.1) 11.4(4.4) 3.2(0.9) 2.8(0.8) 3.7(1.2)

RMI 0.0891 0.0031 0.8135 0.0198 0.0081 1.7689 0.1161 0.0000 0.7691
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RFEWMA scheme has little impact on the increase of p and k, and it still maintains a good efficacy 
even when p ¼ 100. For the multivariate chi-square distribution, the effectiveness of the RFEWMA 
scheme is even better than that of the multivariate normal distribution, and efficacy remains robust 
for the increase of p and k. The above results show that the RFEWMA scheme can effectively 
monitor high-dimensional data with multiple possible classes of shifts. Although the SVMEWMA 
and MEWMA schemes are slightly better in some cases, the RFEWMA scheme is significantly 
better than its competitors when we consider the RMI metric.

So far, we investigate the effectiveness of the RFEWMA scheme when the actual shift of online data 
is the same as that of the historical OOC shift patterns. However, the RFEWMA scheme could also be 
helpful when the process encounters a different type of shift in real-time, not observed earlier in the 
training dataset. This aspect is discussed in Section 4.2. Since the random forest technique is an 
excellent classifier of complex and high-dimensional data in the presence of multiple classes, the 
RFEWMA scheme is robust for monitoring different process distributions and high-dimensional data.

To verify the validity of our proposed scheme, we consider the case where the covariance matrix 
in the IC process is not the identity matrix. We use σij to represent the element of the ith row and jth 

column of the covariance matrix and assume that it is equal to ð0:5Þ i� jj j. We set k ¼ 6 and p ¼ 10. 
Specific simulation results are shown in Table 4. From Table 4, it can be seen that the RMI values of 
our scheme are smaller than those of the SVMEWMA scheme and the MEWMA scheme under 
these three distributions, which indicates that our scheme still performs well when the covariance 
matrix is not the identity matrix. Without loss of generality, we assume that the covariance matrix is 
the identity matrix in the subsequent simulation.

4.2 Monitoring of categorical and mixed-type data

In this subsection, we mainly discuss the monitoring of categorical and mixed-type data. We choose 
the SVMEWMA and MEWMA schemes as the competitors for the performance assessment of the 
proposed RFEWMA scheme. When simulating the monitoring problem of categorical data, we first 
assume that the historical data dimension is 2 (p ¼ 2), one variable has two levels, and the other has 
three levels. Their marginal probabilities are {0.4,0.6} and {0.3,0.4,0.3}. The shift of the historical 
OOC data occurs in the first dimension, and its marginal probabilities become f0:4þ δ; 0:6 � δg. 
The number of the historical IC data and the historical OOC data are both 100,000. The simulation 
results of the three control schemes are shown in Table 5. It can be seen from the table that the 
monitoring effect of the RFEWMA scheme and the SVMEWMA scheme is better than that of 
MEWMA, and RFEWMA has certain advantages in monitoring small shifts.

We then simulate the situation where there are multiple classes of shifts in the historical OOC data. In 
this case, we assume that the historical data dimension is 10 (p ¼ 10) and OOC data is divided into 4 
classes (k ¼ 4).The marginal probability of each variable is separately {0.4, 0.6}, {0.5, 0.5}, {0.7, 0.3}, {0.8, 
0.2}, {0.3, 0.4, 0.3}, {0.2, 0.3, 0.5}, {0.2, 0.3, 0.3, 0.2}, {0.1, 0.2, 0.3, 0.4}, {0.2, 0.2, 0.2, 0.2, 0.2} and {0.1, 0.2, 
0.4, 0.2, 0.1}.We assume that the shift of historical data only occurs in one dimension, and the classes are 
f0:4þ δ; 0:6 � δg; f0:2þ δ; 0:3; 0:5 � δg; f0:1þ δ; 0:2; 0:3; 0:4 � δg; f0:1þ δ; 0:2; 0:4 � δ; 0:2; 0:1g
, and the real shift type is one of the above conditions. We generate the above historical data, in which the 
number of IC data is 10,000 and the number of each class of OOC data is 25,000. The results are 
tabulated in Table 6.

It can be found from Table 6 that the RMI value of the RFEWMA scheme is 0.043, which is 
smaller than that of the other two schemes. Although the efficacy of the RFEWMA scheme is 
slightly inferior in a few cases, overall, the RFEWMA scheme is the most robust for monitoring the 
attribute data with multiple OOC classes, especially in monitoring the small shifts, such as δ � 0:02. 
At the same time, with the increase in shift size, the efficacy of the RFEWMA scheme increases most 
rapidly. The above results show that the RFEWMA scheme is also good at monitoring the attribute 
data with multiple OOC classes.
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There are hardly a few effective methods for monitoring mixed-type data. We still choose the 
SVMEWMA and MEWMA schemes for comparing the effectiveness of our proposed method. In 
this case, we assume that the historical data dimension is 10 (p ¼ 10). Among them x1; . . . ; x8ð Þ are 
continuous data, x9 ¼ Ifx1þx2 > 2g � Ifx1þx2 < 2g and x10 ¼ Ifx6 > 1g � Ifx6 < � 1g are discrete data. We 
consider three cases where continuous data are subject to multivariate normal distribution, the 
multivariate t distribution, and the multivariate chi-square distribution, respectively. The para-
meter ε of the multivariate t distribution and the multivariate chi-square distribution is fixed at 5. 
We assume that the mean of the IC process is the null vector and the covariance matrix is the 
identity matrix. The classes of historical OOC data are 4 (k ¼ 4), and their shifts are, respectively: 
mean of x1; x2 or x6 changes with magnitude equal to 1 (a shift in both continuous and categorical 
data); mean of x3; x4; x5; x7 or x8 changes with magnitude equal to 1 (a shift in continuous data); 
a threshold of categorical variables change from 2 to 1 (x9 ¼ Ifx1þx2 > 1g � Ifx1þx2 < 1g); a threshold of 
categorical variables change from 1 to 0.5 (x10 ¼ Ifx6 > 0:5g � Ifx6 < � 1g). The numerical results based 
on simulation are shown in Table 7. We observe that the RFEWMA scheme has good efficacy for 
mixed data of various types. The results obtained in the current subsection and the previous 
subsection indicate that the RFEWMA scheme is robust with high efficacy for processes with 
different distributions, including continuous, discrete, and mixed-type, especially in the case of 

Table 5. Comparison of ARL1 values for categorical data. The SDRL value is 
shown in parentheses.

δ RFEWMA SVMEWMA MEWMA

0.01 122.4(71.2) 130.4(71.4) 131.0(71.1)
0.02 116.5(71.0) 125.1(72.5) 127.3(73.0)
0.03 113.9(71.6) 108.7(69.6) 121.1(74.2)
0.04 104.3(70.1) 102.6(70.1) 139.1(71.5)
0.05 106.0(70.1) 91.7(76.6) 140.9(71.2)
0.10 58.4(49.1) 55.2(47.8) 142.1(70.2)
RMI 0.0464 0.0232 0.4573

Table 6. Comparison of ARL1 values for categorical data when there are multiple OOC classes in 
historical OOC data. The SDRL value is shown in parentheses.

historical OC RFEWMA SVMEWMA MEWMA

0.01 OC 1 126.7(72.3) 149.6(67.7) 125.7(72.5)
OC 2 127.3(71.7) 149.4(67.9) 129.4(72.7)
OC 3 122.9(71.8) 141.1(69.7) 131.7(71.2)
OC 4 124.7(73.0) 148.7(66.9) 126.9(72.5)

0.02 OC 1 125.4(71.5) 137.4(71.0) 125.4(73.7)
OC 2 128.6(72.6) 140.1(71.2) 129.7(72.3)
OC 3 118.8(73.2) 139.1(69.7) 132.5(71.2)
OC 4 127.5(72.5) 133.6(72.5) 128.3(72.9)

0.03 OC 1 139.7(69.9) 119.3(73.2) 118.5(72.6)
OC 2 130.8(71.2) 135.9(72.9) 119.6(73.6)
OC 3 137.9(71.2) 128.8(73.3) 129.5(72.8)
OC 4 133.3(69.5) 127.9(72.0) 123.2(72.8)

0.04 OC 1 127.7(71.6) 133.2(70.4) 132.1(71.5)
OC 2 134.6(71.7) 131.3(72.0) 139.9(69.3)
OC 3 110.1(71.0) 130.0(70.7) 145.6(69.6)
OC 4 125.8(71.4) 128.9(72.0) 143.0(70.2)

0.05 OC 1 131.4(70.5) 128.7(73.1) 116.2(73.1)
OC 2 127.0(70.4) 141.9(71.3) 116.0(74.9)
OC 3 121.6(70.6) 143.4(70.2) 130.4(75.0)
OC 4 136.6(68.5) 130.5(72.0) 121.3(73.8)

0.1 OC 1 108.6(69.8) 129.5(70.7) 134.1(72.7)
OC 2 109.8(70.9) 109.7(70.8) 147.2(69.3)
OC 3 56.5(48.2) 46.6(39.2) 167.8(60.4)
OC 4 83.6(63.7) 144.1(71.0) 154.0(67.3)

RMI 0.0426 0.1267 0.2039
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high-dimensional and multi-classification data. Consequently, the proposed scheme provides 
a good solution for monitoring many complex processes.

4.3 When historical shifts and real shifts are slightly dissimilar

The real-time process shifts considered in the previous subsections belong to one of the 
classes of shift patterns identified in the historical data. However, it is difficult to guarantee 
this assumption in practice. This section mainly simulates different types of shifts in real-time 
that are not members of the k OOC classes realized in Phase-I. As before, we compare the 
proposed scheme with the SVMEWMA and MEWMA schemes under a similar IC framework 
with the three continuous distributions used in Subsection 3.4. We take the case of k ¼ 4 and 
p ¼ 10 as an example, that is, suppose there are four classes of historical OOC data, and the 
size of each class is 25,000. The shifts of historical OOC data occurred in the first four 
dimensions, and the shift magnitudes are 1. We simulate the case that the shift magnitude in 
Phase-II is 0:1 � 1:0, and the shift occurs at the first dimension. We also consider the 
possibility that the changes occur on two dimensions. Specific simulation results are shown 
in Table 8.

Table 8 shows that there is little difference between the RFEWMA and SVMEWMA schemes in 
the case of the multivariate normal distribution. However, in the case of non-normal distributions, 
the performance of the RFEWMA scheme is better than that of the other two schemes, especially in 
the case of small real-time shifts. When the change in Phase-II is similar to that observed in some 
classes of training samples, the effectiveness of the RFEWMA scheme does not decrease consider-
ably. The results are alike for other types of shifts. This further proves that our proposed SPM 
scheme has good performance for complex process monitoring.

4.4 When the historical data is unbalanced

Our proposed scheme is designed using the historical data which has been collected and suitably 
classified. The previous simulation designs assume that all the k OOC classes are of equal size, but 
this is impractical in real situations. Different classes may contain different sizes of data. This 
section assumes that the historical data are unbalanced, consists of 100,000 IC sample observations 
and a varying number of OOC observations from other classes. We take the same three multivariate 
continuous distributions as before to compare the efficacies of the three SPM schemes. Similar 
results can be obtained for different types of data but are omitted for brevity. The simulation results 
are shown in Table 9.

Similar to the continuously balanced case results, the overall monitoring effects of the 
RFEWMA and SVMEWMA schemes are better than that of the MEWMA scheme. In the 
case of the multivariate normal distribution, the monitoring effect of the SVMEWMA scheme is 
slightly better than that of the RFEWMA scheme, but in the case of non-normal distributions, 
the monitoring effect of the RFEWMA scheme is better and more robust. Correlative conclu-
sions can also be drawn from the RMI values, which indicates that the proposed scheme 
maintains a high efficacy for unbalanced data, which is also in line with the characteristics of 
the random forest model.

4.5 Determination of some important parameters

In this subsection, we mainly discuss selecting some critical parameters in the model during the 
construction of the RFEWMA scheme. For different data distributions and data types, there may be 
different possible choices of optimal parameters. The multivariate normal distribution and the 
multivariate t distribution are taken as examples. We minimize ARL1 as the standard to determine 
the optimal parameters under the condition that the shift of OOC data only occurs in the first 

QUALITY TECHNOLOGY & QUANTITATIVE MANAGEMENT 17
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dimension. We assume that the process dimension is 10 (p ¼ 10) and that there is only one type of 
shift in the OOC data (k ¼ 1). Both IC data and OOC data used to train the random forest model 
are 100,000, and ARL0 is fixed at 200.

We first discuss the determination of parameter λ in the MEWMA sequence. In the case of 
λ ¼ 0:05; 0:1 and 0:2, we simulate the change in the ARL1 value corresponding to different shift 
sizes, as shown in Figure 1(a, b). It can be seen from the figure that the results of the multivariate 
normal distribution and the multivariate t distribution are similar: in the case of small shifts, the 
ARL1 value is the smallest when λ ¼ 0:05, and with the increase in the shift sizes, the difference 
between the ARL1 values corresponding to three kinds of λ gradually decreases. For large shifts, the 
efficacy of the proposed scheme is slightly better when λ ¼ 0:2. To sum up, the traditional concept 
of using a smaller λ for small shifts and a larger λ for large shifts is also valid for our proposed 
scheme.

We study the choice of the maximum number of features used by a single decision tree (mtry) 
and the number of decision trees (mtree) in the random forest model. First, we set λ ¼ 0:1 and 
mtree ¼ 300 in the MEWMA model to simulate the situations with mtry ¼ 1; 3; 5; 7; 9. From 
Figure 2(a, b), we see that in the case of a small shift, such as δ ¼ 0:5, the results of optimal mtry 
in the two distributions are different. For the multivariate normal distribution, mtry ¼ 9 should be 
selected, while for the multivariate t distribution, mtry should be set to 7. In the case of large shifts, 
the results are similar in both distributions. When mtry ¼ 3, a point of inflection appears in the 
graph. To ensure the running speed of the algorithm, we recommend setting the value of mtry as the 
positive square root of the data dimension in the case of large shifts. When determining the value of 
mtree, we also choose λ ¼ 0:1 in the MEWMA model and mtry ¼ 3 to simulate the situation of 
mtree ¼ 50; 100; 200; 300; 400; 500. From Figure 2(c, d), it is observed that the smaller the number 
of decision trees, the smaller the value of ARL1. In large shifts, the change in the number of decision 
trees has little effect on the monitoring effect. Here, we recommend that the value of mtree should 
be between 50 and 300.

Finally, we discuss the determination of parameter M in the MEWMA sequence, taking the 
multivariate t distribution as an example. We use the minimization of ARL1 as the criterion to 
determine the optimal parameters when OOC data occurs in different dimensions. We assume that 
the process dimension is 6 (p ¼ 6) and there are six types of OOC data (k ¼ 6). Both IC and OOC 
data used to train the random forest model are 100,000, and ARL0 is fixed at 200. We first set 
λ ¼ 0:1, mtree ¼ 300, and the value of mtry is set to the positive square root of the data dimension 
in the MEWMA model. As shown in Table 10, the ARL1 value is generally minimized when 
M ¼ 20. Therefore, we recommend setting M to 20.

4.6 Required sample size to determine the control limit

In previous subsections, we assumed that sufficient historical IC data and OOC sample observations 
were available in Phase-I. However, it may be necessary to determine the specific total sample size in 
practical applications. In this subsection, we take only one shift class in OOC data as an example 
(k ¼ 1) to study the total sample size required to determine the robust control limit L under the 
multivariate normal and multivariate t distributions. We only consider the case where the number 
of historical IC data m0 is equal to the number of historical OOC data m1. The data dimension is 
selected as 10 (p ¼ 10), and the shift of OOC data occurs in the first dimension, and the magnitude 
is 1. The summary of the numerical results based on simulation is presented in Table 11. We use 
100,000 IC data and 100,000 OOC data to train the model and construct the RFEWMA scheme. We 
use these data to calculate the scheme L under the two distributions. The scheme L of 0.312 and 
0.135 is calculated, respectively, under the condition that ARL0 is fixed at 200. We simulate 
different m0 conditions and train new models. An independent set of IC data is regenerated, and 
we calculate the new ARL0 values with the control limit calculated before when m0 = 100000. We 
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Figure 1. The ARL1 values of different λ in (a) the multivariate normal distribution, and (b) the multivariate t distributions.

Figure 2. The ARL1 values corresponding to different mtry values in (a) the multivariate normal distribution, and (b) the 
multivariate t distribution when mtree ¼ 300; and the ARL1 values corresponding to different mtree values in (c) the multivariate 
normal distribution, and (d) the multivariate t distribution when mtry ¼ 3.
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can see that when m0 is 10,000, there is a certain gap between the recalculated ARL0 value and 200, 
but with the increase in the sample size, the gap has gradually narrowed down. For the multivariate 
normal distribution, the ARL0 is close to 200 when m0 is 70,000, while in the case of the multivariate 
t distribution, a good effect has been achieved when m0 is 30,000. However, the determination of 
the sample size under more different data types and distributions needs more research in the future.

5 Illustrative example

We now apply our method to a real monitoring example mentioned earlier. In this example, we use 
the dataset provided by Zhang et al. (2015). The authors divided the raw data into IC data and OOC 
data. Considering that the system can record a large number of historical IC data and OOC data 
quickly, we apply the RFEWMA scheme to monitor the HDDMS process mentioned in Section 1. 
More than 3 million pieces of IC data and 120,000 pieces of OOC data are collected, and we explore 
the distribution of the data through visualization. We take the 5th, 6th and 10th attributions of the 
data as the representative, and draw the scatter plots of 200 random samples, as shown in 
Figure 3(a)–(c) and the normal Q–Q plots as shown in Figure 3(d–f). We can see that each marginal 
has a different distribution, and it is difficult to approximate them by some well-known distribu-
tion, and the SPM scheme based on the distributional assumption may not solve the problem of 
monitoring the process well. Thus we can apply our method to this dataset.

In Phase-I, we need to classify the raw data. Since the IC data and the OOC data above have been 
classified beforehand, we only need to determine the specific classification number of the OOC data. 
Here we use the k � means clustering method to cluster the OOC data based on the classification 
criterion of minimizing the sum of squared error (SSE) MacQueen (1967). The OOC data is divided 
into two classes (k ¼ 2). The sample sizes of each class are 79,500 and 45,277. The result of clustering 
is shown in Figure 4.

We randomly select 100,000 pieces of IC sample observations and 250,000 pieces of OOC 
observations from each of the two OOC classes from the historical data set to construct the 
RFEWMA scheme. At the same time, we select another 100 pieces of IC and 200 pieces of OOC 
samples from the Phase-I data, which do not use for training the random forest model to generate 
MEWMA sequences for online testing. Here, we set the number of the decision trees in the random 

Table 10. Comparison of ARL1 values when M is different. The SDRL value is shown in parentheses.

k p historical t ðdf ¼ 5Þ

OC mean M=10 M=15 M=20 M=25 M=30

6 6 1 in 1st com 24.8(20.7) 22.6(17.3) 21.5(16.1) 21.7(14.8) 24.4(14.2)
1 in 2nd com 29.2(22.4) 27.0(18.8) 25.3(17.4) 24.5(16.9) 29.2(20.6)
1 in 3rd com 16.0(10.4) 15.3(10.5) 15.4(11.0) 16.3(12.7) 17.1(12.0)
1 in 4th com 82.1(66.8) 65.6(54.4) 51.6(42.1) 52.2(43.1) 56.2(43.0)
1 in 5th com 41.2(40.4) 31.4(24.8) 27.1(20.1) 28.9(21.8) 30.5(22.9)
1 in 6th com 36.4(30.8) 33.1(25.0) 27.9(20.0) 28.2(19.4) 31.9(21.3)

RMI 0.3012 0.1283 0.0065 0.0272 0.1337

Table 11. Simulation results about ARL1 on sample size 
under the multivariate normal distribution and the mul-
tivariate t distribution with λ ¼ 0:1. The SDRL value is 
shown in parentheses.

m0 Normal t ðdf ¼ 5Þ

10000 187.4(177.4) 190.5(182.8)
30000 186.4(176.9) 201.5(193.6)
50000 218.8(206.5) 195.5(186.1)
70000 198.3(189.0) 198.8(189.5)
90000 201.4(192.0) 198.4(191.0)
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forest as 200, the number of selected features as 3, and λ in the MEWMA sequence as 0.1. The 
control limit L is obtained by Monte Carlo simulation to ensure that the value of ARL0 is 200 and is 
found to be 0.615. The final monitoring result is shown in Figure 5(a). The RFEWMA scheme gives 
an alarm at the 104th point, that is, ARL1 is 4, which proves that our proposed scheme can effectively 
solve the monitoring problem in this process. We use the same method to build the SVMEWMA 
scheme, and the final result is shown in Figure 5(b). The control limit L for the chart is 0.968 and the 
scheme gives an alarm at the 107th point. The above comparison result also proves the high 
efficiency of our scheme.

6 Conclusion and future work

In this paper, the RFEWMA scheme based on the random forest model is proposed, making full use 
of historical data and the information therein to realize effective monitoring of complex processes 
of different natures. Through the numerical study of various situations and comparison with other 
SPM schemes, it is established that the proposed RFEWMA scheme has better monitoring perfor-
mance, especially for the monitoring of high-dimensional and the data which may tend to belong to 
different classes under an OOC set-up. We apply our control scheme to the monitoring problem of 

Figure 4. Two-dimensional scatter plot of 12,000 OOC samples.

Figure 5. The RFEWMA chart (a) and the SVMEWMA chart (b) for monitoring the hard disk data. A change point occurs at the 
100th point.
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the real example and get the ARL1 of 4, which proves that our control scheme can provide an 
effective method for the monitoring of such a process.

Although the content related to the RFEWMA control scheme has been discussed in detail, some 
problems need to be further studied. When monitoring the location shifts, our proposed SPM scheme 
mainly considers that the dimensions of the actual change are the same as those of the historical shifts. 
It is also essential to detect more location shift types and scale shifts. These issues not considered in this 
paper need to be studied in the future, and the RFEWMA scheme needs to be improved to realize the 
monitoring of various other types of shifts. In our study on the random forest parameters, only the 
independent effects of two main parameters are considered. Future works can deliberate the interac-
tion effects of parameters and add the study to the effects of other parameters on the monitoring effect.
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