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ABSTRACT

We propose a Likelihood Matching approach for training diffusion models by first
establishing an equivalence between the likelihood of the target data distribution and
a likelihood along the sample path of the reverse diffusion. To efficiently compute
the reverse sample likelihood, a quasi-likelihood is considered to approximate each
reverse transition density by a Gaussian distribution with matched conditional mean
and covariance, respectively. The score and Hessian functions for the diffusion
generation are estimated by maximizing the quasi-likelihood, ensuring a consistent
matching of both the first two transitional moments between every two time points.
A stochastic sampler is introduced to facilitate computation that leverages both
the estimated score and Hessian information. We establish consistency of the
quasi-maximum likelihood estimation, and provide non-asymptotic convergence
guarantees for the proposed sampler, quantifying the rates of the approximation
errors due to the score and Hessian estimation, dimensionality, and the number of
diffusion steps. Empirical and simulation evaluations demonstrate the effectiveness
of the proposed Likelihood Matching and validate the theoretical results.

1 INTRODUCTION

Generative models and methods facilitate powerful learning of data distributions by generating
controlled sequences of synthetic data, and stand as a cornerstone of modern machine learning,
driving progress in areas like image synthesis, protein design, and data augmentation (Goodfellow
et al., 2014; Sohl-Dickstein et al., 2015; Kobyzev et al., 2020; Watson et al., 2023; Dhariwal &
Nichol, 2021; Yang et al., 2023; Chen et al., 2024). The mainstream diffusion methods like the
denoising diffusion probabilistic models (DDPMs) (Ho et al., 2020) and the denoising diffusion
implicit models (DDIMs) (Song et al., 2021a) have demonstrated state-of-the-art performance in
generating high-fidelity samples, particularly in image synthesis (Betker et al., 2023; Esser et al.,
2024). Among the leading methods, the score-based generative models (SGMs) (Sohl-Dickstein et al.,
2015; Ho et al., 2020; Song et al., 2021c) have achieved remarkable success, producing synthetic
samples across various domains. The models typically operate by progressively adding noise to
data (forward process) and then learning to reverse this process (reverse process), often guided by
estimating the score function (gradient of the log-likelihood) of the perturbed data distributions.

The standard training objective for SGMs is based on score matching (Hyvärinen & Dayan, 2005;
Vincent, 2011; Song et al., 2021c), which minimizes the discrepancy between a parameterized
score function and the underlying score functions at different noise levels of the diffusion process.
While being highly effective empirically, the score matching method provides only an indirect
connection to the likelihood of the original data distribution q0 as an upper bound rather than the
likelihood itself. Maximizing the data likelihood directly is the approach for parameter estimation
in Statistics, underpinned by attractive properties of the Maximum Likelihood Estimation (MLE),
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(a) Score Matching (b) Likelihood Matching

Figure 1: Illustration of Score Matching (a) versus Likelihood Matching (b) methods. The proposed
Likelihood Matching captures a richer set of transition densities while incorporating both score
matching and covariance matching, whereas Score Matching exclusively focuses on a single transition
density and utilizes only first-order moment information.

which often yields the most accurate estimators with desirable asymptotic properties like consistency
and efficiency.

This paper explores a direct maximum likelihood framework for training diffusion models. We
leverage a fundamental property that the path likelihood of the reverse diffusion process is intrinsically
equivalent to the likelihood of the original data distribution q0(θ) (up to constants related to the
forward process) (Anderson, 1982; Haussmann & Pardoux, 1986) where θ denotes a parameter vector
in a family of distributions F that q0 belongs to. The equivalence (formalized in Proposition 1)
suggests that maximizing the exact path likelihood of the reverse process is equivalent to maximizing
the likelihood log q0(·; θ).
To make it operational, we propose approximating the intractable reverse transition densities
pt−1|t(Yt−1|Yt; θ) via the Quasi-Maximum Likelihood Estimation (QMLE) with a proper Gaus-
sian distributions (Wedderburn, 1974). As derived in Proposition 2, the mean and covariance of
these conditional distributions depend not only on the score function ∇ log qt(·; θ) but also on its
Hessian function∇2 log qt(·; θ). We therefore parameterize both the score st(·;ϕ) and the Hessian
Ht(·;ϕ) (e.g., using the neural networks) and optimize the parameters ϕ by minimizing the resulting
approximate negative quasi-likelihood using the observed data trajectories.

Building upon this quasi-likelihood formulation, we introduce a computationally efficient objective
called Likelihood Matching (LM). This objective not only provides a practical way to implement
our framework but also offers a novel extension of the traditional score matching (SM), inherently
incorporating covariance matching which is a form of likelihood weighting often beneficial in practice.
Our key idea is summarized in Figure 1.

Recent works have incorporated likelihood information or higher-order terms into diffusion training,
either via maximum-likelihood formulations for score-based models and diffusion ODEs (Song
et al., 2021b; Lu et al., 2022; Zheng et al., 2023) or via Hessian-enhanced objectives (Dockhorn
et al., 2021; Karras et al., 2022; Rissanen et al., 2024; Wang et al., 2025). However, these methods
typically operate within regularized score-matching or probability-flow ODE formulations and thus
still optimize surrogate objectives or upper bounds rather than the data likelihood itself. By contrast,
we start from the exact path likelihood of the reverse diffusion SDE and construct an analytical
quasi-maximum likelihood (QMLE) approximation of the reverse transition densities, yielding an
LM objective that directly targets data likelihood.

Complementary to these continuous-time approaches, a closely related line of work in discrete-time
DDPMs focuses on learning or designing the reverse covariance via variational objectives, including
variance interpolation (Nichol & Dhariwal, 2021) and analytical ELBO-based derivations such as
Analytic-DPM, SN-DDPM, and OCM-DDPM (Bao et al., 2022b; Ou et al., 2025; Bao et al., 2022a),
as well as Gaussian mixture refinements (Guo et al., 2023). While these methods improve likelihood
and sampling by better parameterizing the covariance within a fixed ELBO framework, LM is
formulated in the continuous-time reverse SDE setting and uses QMLE to approximate the full path
likelihood, providing a distinct likelihood-based training paradigm rather than a covariance-tuning
strategy.

The main contributions of this work are the following

• We propose a novel training objective function for diffusion models based on the quasi-likelihood,
leading to an approximation of the reverse path log-likelihood and a computationally efficient
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variant called Likelihood Matching (LM) that combines score matching and covariance matching
with implicit likelihood weighting.

• We derive a stochastic sampler that leverages both the learned score function and Hessian informa-
tion through the implied conditional mean and covariance structure of transition densities.

• We provide non-asymptotic convergence guarantees for the proposed sampler in total variation
distance, characterizing the errors in terms of score and Hessian estimation error, dimension d, and
diffusion steps T . It reveals that the reverse step error scales at O(d3 log4.5 T/T ), while the score
estimation error and Hessian estimation error are at the rate of O(

√
log T ) and O(log T/

√
T ),

respectively.

• We theoretically demonstrate the consistency of the proposed quasi-maximum likelihood diffusion
training under reverse quasi-likelihood objectives.

• We evaluate the proposed approach on standard benchmark image data, demonstrating its effec-
tiveness and the impact of choices for Hessian approximation rank r and the number of distinct
transition probability densities evaluated per sample path, confirming the critical role of the learned
Hessian through ablation studies.

Detailed proofs of theoretical results are provided in Appendix B.

2 BACKGROUND AND MOTIVATIONS

2.1 NOTATIONS

Throughout the paper, we employ the following convention on notation: ∥·∥ designates the L2

(spectral) norm for matrices or the L2 norm for vectors, while ∥·∥F represents the Frobenius
norm of a matrix. The determinant of a matrix is denoted by |·| or det(·). For matrices A
and B, we use tr(A) to represent the trace of A, and A ⪰ B indicates that A − B is positive
semidefinite. For two probability measure P and Q, we define their total-variation (TV) dis-
tance as TV(P ||Q) := supA∈F |P (A)−Q(A)| and their Kullback-Leibler (KL) divergence as

KL(P ||Q) :=
∫
log(dP/dQ)dP . For two random vectors X and Y , X d

= Y signifies that their
cumulative distribution functions FX and FY are identical almost surely. We employ X0:t to represent
the sequence (X0, X1, · · · , Xt) , qs|t denotes the conditional probability density function (PDF) of
Xs given Xt and q0:t represents the joint PDF of X0:t. We use f(x) ≲ g(x) or f(x) = O(g(x))
(resp. f(x) ≳ g(x)) to denote f(x) ≤ cg(x) (resp. f(x) ≥ cg(x)) for a universal constant c and all
x. We write f(x) ≍ g(x) when both f(x) ≲ g(x) and f(x) ≳ g(x) hold.

2.2 PRELIMINARIES AND MOTIVATIONS

We adhere to the foundational generative models introduced in Song et al. (2021c), where both
the forward and reverse processes are characterized by a unified system of stochastic differential
equations (SDEs).

Let X1, · · · , Xn be independent and identically distributed (IID) random observations from a target
distribution on Rd with density q0. We assume this distribution belongs to a specific parametric
family of distributions Fθ, characterized by a true parameter θ ∈ Rh, with the PDF q0(θ). The high
dimensionality of θ often presents challenges for traditional statistical inference methods, highlighting
a key area where diffusion models can provide better solutions.

The forward diffusion process for {Xt}t∈[0,T ] in Rd is expressed by SDEs

dXt = −
1

2
βtXtdt+

√
βtdWt, X0 ∼ q0(θ), (1)

where βt is a given time-dependent diffusion coefficient and Wt denotes the Brownian motion. Let
qt(·; θ) represents the PDF of Xt. It is noted that qt(·; θ) only depend on θ since the transition density
qt|t−1 is free of the parameter θ as βt is known.

Under mild regularity conditions on q0(θ), Anderson (1982) and Haussmann & Pardoux (1986)
establish that there are reverse-time SDEs {Yt}t∈[T,0] which exhibit identical marginal distributions
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as the forward diffusion processes (1) such that Yt
d
= Xt, and satisfy

dYt =
1

2
βt(Yt + 2∇ log qt(Yt; θ))dt+

√
βtdW̄t, YT ∼ qT (θ), (2)

where W̄t is the Brownian motion, pt(·; θ) is the PDF of Yt and ∇ log qt(·; θ) represents the score
function of the marginal density qt. As both θ and qt are unknown, the exact score function is
inaccessible. Therefore, we endeavor to approximate it with a suitable estimator st(·). Typically,
we parametrize st(·) as st(·;ϕ) via either a neural network (or parametric models like the Gaussian
Mixtures) base on the sample {Xi}ni=1. To be precise, throughout this paper, θ refers to the true
parameters of the data distribution in an oracle setting (i.e., when the parametric family Fθ is known),
whereas ϕ denotes the learnable parameters of our neural network models.

Additionally, we substitute the distribution of YT with a prior distribution π, which is specifically
chosen asNd(0, Id) to facilitate data generation. Consequently, the modified reverse diffusion process
{Ŷt}t∈[T,0] is defined as

dŶt =
1

2
βt(Ŷt + 2st(Ŷt;ϕ))dt+

√
βtdW̄t, ŶT ∼ π = Nd(0, Id). (3)

The existing approach matches the score function∇ log qt(Xt) with an objective function (Hyvärinen
& Dayan, 2005; Song et al., 2020), which aims to learn the score function by minimizing

JSM(ϕ) :=
1

2

∫ T

0

EX0∼q0EXt∼qt|0

[
λ(t) ∥∇ log qt(Xt|X0)− st(Xt;ϕ)∥2

]
dt+ C̃T , (4)

where λ(t) is a positive weighting function and st(Xt;ϕ) is an neural network (NN) with parameter
ϕ. The rationale for the approach is the following inequality (Corollary 1 in Song et al. (2021b)):

−EX0
[log q0(X0;ϕ)] ≤ JSM (ϕ) + C1, (5)

where C1 is a constant independent of ϕ. This inequality explicitly shows that classical score
matching only minimizes an upper bound on the negative log-likelihood rather than the likelihood
itself. However, recent analyses (Koehler et al., 2023) have shown that this can lead to a severe loss
of statistical efficiency compared to MLE, even for simple families of distributions like exponential
families. Motivated by this limitation, we propose an approach that directly minimizes the negative
log-likelihood −EX0

[log q0(X0;ϕ)] instead of its upper bound JSM.

To derive the relationship between the likelihood of forward and backward trajectories, by a property
of reversal diffusion (Haussmann & Pardoux, 1986), for any chosen time steps 0 = t0 < t1 < · · · <
tN−1 < tN = T , there is an equivalence of the joint likelihoods between the forward and the reverse
processes:

qt0:tN (xt0 , xt1 , · · · , xtN ; θ) = pt0:tN (xt0 , xt1 , · · · , xtN ; θ), (6)

where qt0:tN and pt0:tN represent the joint densities of the processes {Xtk}Nk=0 and {Ytk}Nk=0.

The following proposition shows that the expected log-likelihood at t = 0 can be expressed by
transition and marginal densities of the forward and the time-reversal processes. It will serve to
construct the wanted likelihood approximation.

Proposition 1. Suppose that there exits a positive constant C such that 0 < βt ≤ C for any t ∈ [0, T ],
and for any open bounded set O ⊆ Rd,

∫ T

0

∫
O(∥qt(x; θ)∥

2
+ d · βt∥∇qt(x; θ)∥2)dxdt <∞, then

EXt0∼qt0
log qt0(Xt0 ; θ) = EXt0:tN

∼qt0:tN

{ N∑
k=1

log ptk−1|tk(Xtk−1
|Xtk ; θ)

+ log ptN (XtN ; θ)︸ ︷︷ ︸
converge to Nd(0,Id)

−
N∑

k=1

log qtk|tk−1
(Xtk |Xtk−1

)︸ ︷︷ ︸
given by (1) (independent of θ)

} (7)

for any 0 < t1 < · · · < tN−1 < T .
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Proposition 1 links the expected log-likelihood of the initial distribution to that involving the forward
process and the reverse process. As the forward transition density qtk|tt−1

(Xtk |Xtk−1
) is free of the

parameter θ due to βt being known, and for sufficiently large tN , the density ptN (XtN ; θ) converges
to a stationary distribution Nd(0, Id) that is also independent of θ, (7) becomes

−EX0∼q0 [log q0(X0; θ)] ≈ −EXt0:tN
∼qt0:tN

{ N∑
k=1

log ptk−1|tk(Xtk−1
|Xtk ; θ)

}
+ CT

=: L(θ) + CT , (8)

where CT denotes a constant free of θ.

The approximation in (8) arises from using a finite terminal time T instead of infinity. This truncation
error is well-controlled; as established in Appendix B (Lemma 1), the KL divergence between the
perturbed data distribution qT and the prior distribution converges to zero at a polynomial rate with
respect to T . Expression (8) suggests a more attractive strategy, that is to minimize a computable
version of L(θ) rather than minimizing a version of the upper bound JSM (ϕ) in (5). In the next
section, we detail an approach using the Quasi Maximum Likelihood, which allows constructing
a tractable objective function by specifying an analytical form for these conditional log-likelihood
terms.

Moreover, the arbitrariness of t1 < · · · < tN−1 in (7) offers convenience for designing efficient
algorithms to realize the approximation of L(θ).

3 METHODOLOGY

We assume access to the original data {X(i)
0 }ni=1 where each X

(i)
0 ∈ Rd at t = 0. For any fixed

index i, we can generate a sequence of discrete observations {X(i)
tk
}Nk=0 according to the SDEs (1).

Throughout the paper, we denote by T > 0 the diffusion horizon of the continuous-time SDE, and by
N the number of discrete reverse transition densities evaluated per path in the LM objective. In the
theoretical analysis (Section 4) we set tk = k and N = T with unit time increments, while in the
experiments (Section 5) we draw a random grid of N time points from [0, T ] as in Algorithm 2.

3.1 QUASI-MAXIMUM LIKELIHOOD ESTIMATION

The objective function L(θ) requires evaluating the transition densities ptk−1|tk(Yttk−1
|Ytk ; θ), whose

functional forms are unavailable. We adopt the Quasi-Maximum Likelihood approach (QML) (Wed-
derburn, 1974). This involves replacing the intractable true reverse transition density ptk−1|tk with
a tractable proxy. Specifically, we use a Gaussian distribution whose mean and covariance match
the true conditional mean and covariance of the reverse process, which are derived in Proposi-
tion 2. As Yt

d
= Xt and the joint PDF equivalence (6), these moments are the same as those of

qtk−1|tk(Xttk−1
|Xtk ; θ).

The following proposition provides the analytical forms of these conditional mean and covariance,
which are used to define matched Gaussian distribution in the quasi-likelihood.
Proposition 2. Let µs|t and Σs|t be the conditional mean and covariance of qs|t(Xs|Xt; θ), respec-
tively, for s < t. Then,

µs|t = E (Xs|Xt) =
Xt + σ2

t|s∇ log qt(Xt; θ)

mt|s
and

Σs|t = E
[(
Xs − µs|t

) (
Xs − µs|t

)T |Xt

]
=

σ2
t|s

m2
t|s

(
Id + σ2

t|s∇
2 log qt(Xt; θ)

)
,

where mt|s = exp{−
∫ t

s
βtdt/2} and σ2

t|s = 1− exp{−
∫ t

s
βtdt}.

To facilitate the QMLE approach, we parameterize both ∇ log qt (Xt; θ) and the Hessian function
∇2 log qt(Xt; θ). This parameterization strategy adapts to whether the data’s parametric family Fθ is
known a priori. In specialized domains like financial modeling or signal processing, where Fθ can be
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known, these functions can be expressed analytically in terms of the true parameters θ, a property
we use for parameter estimation in Section 5.1. More commonly, for complex high-dimensional
data like images where Fθ is unknown, we employ neural networks as universal approximators. Our
implementation uses two separate U-Net models to represent the score st(x;ϕ) and the Hessian
Ht(x;ϕ), where ϕ denotes their learnable parameters.

The quasi-likelihood approximation to transition density ptk−1|tk(Ytk−1
|Ytk ;ϕ) is

p̂tk−1|tk(Ytk−1
|Ytk ;ϕ) = φd(Ytk−1

;µtk−1|tk(Ytk ;ϕ),Σtk−1|tk(Ytk ;ϕ)), (9)

where φd(x;µ,Σ) denote the d-dimensional Gaussian density with mean µ and covariance Σ,
µtk−1|tk(Ytk ;ϕ) = m−1

tk|tk−1
(Ytk + σ2

tk|tk−1
stk(Ytk ;ϕ)) and Σtk−1|tk = m−2

tk|tk−1
σ2
tk|tk−1

{Id +

σ2
tk|tk−1

Htk(Ytk ;ϕ)}. With the quasi-Gaussian specification (9), we define the population-level
quasi-log-likelihood objective function

L(ϕ) = −
N∑

k=1

EXt0:tN
∼qt0:tN

{
log p̂tk−1|tk(Xtk−1

|Xtk ;ϕ)
}

(10)

based on the forward data processes by noting (7) and (9).

Let ℓ
(i)
{t0,··· ,tN}(ϕ) = −

∑N
k=1 log p̂tk−1|tk(X

(i)
tk−1
|X(i)

tk
;ϕ), where X

(i)
tk

= mtk|tk−1
X

(i)
tk−1

+

σtk|tk−1
Z

(i)
tk

be the realized path of the forward SDE (1) and {Z(i)
tk
}Nk=1 are IID standard Gaus-

sian noise, and let

Jn,N (ϕ) = n−1
n∑

i=1

ℓ
(i)
{t0,··· ,tN}(ϕ) (11)

be the aggregated sample quasi-log-likelihood, which depends on the choices of {t0, t1, · · · , tN}.
Let ϕ̂n,N = argminϕ Jn,N (ϕ) be the quasi-MLE. Substituting st(Yt; ϕ̂n,N ) to the reverse SDE (2)
yields the modified reverse SDE

dŶt =
1

2
βt(Ŷt + 2st(Ŷt; ϕ̂n,N ))dt+

√
βtdW̄t, ŶT ∼ π = Nd(0, Id), (12)

and denote the density of of Ŷt(ϕ̂n,N ) by pt(·; ϕ̂n,N ). For notational simplicity, in the rest of this
paper, we use qt ≡ qt(·; θ), p̂t ≡ pt(·; ϕ̂n,N ), ŝt(·) ≡ st(·; ϕ̂n,N ) and Ĥt(·) ≡ Ht(·; ϕ̂n,N ).

Stochastic Sampler. Proposition 2 implies the following sampling procedure that differs from the
conventional DDPM-type sampler (Ho et al., 2020):

Ỹt−1 = µ̂t−1|t(Ỹt) + Σ̂
1
2

t−1|t(Ỹt)Zt (13)

for t = T, · · · , 1, where Zt
IID∼ Nd(0, Id) and

µ̂t−1|t(Ỹt) = m−1
t|t−1(Ỹt + σ2

t|t−1ŝt(Ỹt)),

Σ̂t−1|t(Ỹt) = m−2
t|t−1σ

2
t|t−1{Id + σ2

t|t−1Ĥt(Ỹt)},
(14)

which involves the score and the Hessian function. Similarly, we denote the PDF of Ỹt generated by
(13) as p̃t. An efficient implementation of the sampling scheme is given in Appendix C.4.

3.2 LIKELIHOOD MATCHING AND EFFICIENT ALGORITHMS

To realize the Quasi-Likelihood (11), the intermediate time points t1 through tN−1 are fixed in
advance. To effectively utilize the evolutionary information from the forward SDEs, practitioners
often employ an exceedingly large number of discretization steps, say N , to generate training data.
However, such fine-grained discretization imposes significant computational burdens on training both
the score model st and the Hessian model Ht. To address this issue, we propose a more efficient
computational algorithm.
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We note that that Proposition 1 holds true for arbitrary time points 0 < t1 < · · · < tN−1 < T , which
enables a time-averaged version of (10), expressed as:

− (N − 1)!

TN−1

∫ T

0

· · ·
∫ t2

0

N∑
k=1

EXt0:tN
∼qt0:tN

{
log p̂tk−1|tk(Xtk−1

|Xtk ;ϕ)
}
dt1 · · · dtN−1.

An empirical version can be constructed by randomly sampling an ordered time grid (t
(i)
1 , · · · , t(i)N−1)

from the uniform distribution over the simplex T = {(t1, · · · , tN−1) ∈ (0, T )N−1 | t1 < · · · <
tN−1}, yielding the following stochastic optimization objective

J̃n,N (ϕ) = n−1
n∑

i=1

ℓ
(i)

{t0,t(i)1 ,··· ,t(i)N−1,tN}
(ϕ) = n−1

n∑
i=1

N∑
k=1

{− log p̂
t
(i)
k−1|t

(i)
k

(X
(i)

t
(i)
k−1

|X(i)

t
(i)
k

;ϕ)},

(15)
where

− log p̂
t
(i)
k−1|t

(i)
k

(X
(i)

t
(i)
k−1

|X(i)

t
(i)
k

;ϕ)

=
1

2
log |Σ

t
(i)
k−1|t

(i)
k

(X
(i)

t
(i)
k

;ϕ)|+ 1

2
∥Σ− 1

2

t
(i)
k−1|t

(i)
k

(X
(i)

t
(i)
k

;ϕ)(X
(i)

t
(i)
k−1

− µ
t
(i)
k−1|t

(i)
k

(X
(i)

t
(i)
k

;ϕ))∥2. (16)

We call (15) the Likelihood Matching (LM) objective. The random time-point selection strategy
allows a more comprehensive temporal evaluation during training, even with a modest transition step
N . Regarding the time sampling strategy, our objective in (15) is derived from the path integral of
the log-likelihood (Proposition 1), which implies a uniform integration over time. Consequently,
sampling uniformly from the simplex yields an unbiased Monte Carlo estimator. While prior works
often employ hand-crafted, non-uniform sampling schemes to emphasize difficult noise levels (Song
et al., 2021c; Karras et al., 2022), incorporating such schedules into LM would require importance
weighting to maintain unbiasedness. Exploring importance sampling or non-uniform weighting
within the LM framework to reduce gradient variance remains an interesting direction for future
work.

Furthermore, by expanding equation (16), the second term in (16) becomes

1

2
∥(Id + σ2

t
(i)
k |t(i)k−1

H
t
(i)
k

(X
(i)

t
(i)
k

;ϕ))−
1
2 (Z

t
(i)
k

+ σ
t
(i)
k |t(i)k−1

s
t
(i)
k

(X
(i)

t
(i)
k

;ϕ))∥2

which unifies the score matching (Song et al., 2021c) and likelihood weighting (Song et al., 2021b)
as special cases of the transition probability within our LM objective. In particular, when Ĥt ≡ 0

the second term reduces to a rescaled ℓ2 loss between Z
t
(i)
k

and σ
t
(i)
k |t(i)k−1

s
t
(i)
k

(X
(i)

t
(i)
k

;ϕ), recovering

standard score matching; the presence of (I + σ2Ht)
−1/2 plays the role of an automatically learned

likelihood weight, while the extra log |Σtk−1|tk | term completes a proper quasi likelihood for the re-
verse transition. However, our formulation integrates covariance to weight the score while leveraging
additional transition probabilities, thereby utilizing more trajectory information. The algorithm for
Likelihood Matching is provided in Appendix A.

The LM objective (15) incorporates both score matching and an additional covariance matching.
Moreover, it naturally weights each time step via the matched covariance, rather than relying on
pre-specified weights, for instance, λ(t) in (4). The experimental section analyzes how different
number of generated time points N in (15) affects the performance.

Exploiting the intrinsic dimensionality of real data distributions, Meng et al. (2021) pro-
posed parameterizing Ht(Xt;ϕ) with low-rank matrices defined as Ht(Xt;ϕ) = U t(Xt;ϕ) +
V t(Xt;ϕ)V t(Xt;ϕ)

T where U t(·;ϕ) : Rd → Rd×d is a diagonal matrix, and V t(·;ϕ) : Rd →
Rd×r is a matrix with a prespecified rank r ≪ d for a pre-determined r, reducing computational
complexity. We explore the impact of different r in the experimental section.

To efficiently compute the likelihood (15), we apply the Sherman-Morrison-Woodbury (SMW)
formula, namely after suppressing argument (Xt;ϕ) in related quantities, for any X ∈ Rd,

XT (Id + σ2
tk−1|tkU t + σ2

tk−1|tkV tV
T
t )

−1X = X̃T X̃ − (Ṽ
T

t X̃)T (Ir + Ṽ
T

t Ṽ t)
−1(Ṽ

T

t X̃),
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where X̃ = (Id + σ2
tk−1|tkU t)

−1/2X and Ṽ t = σtk−1|tk(Id + σ2
tk−1|tkU t)

−1/2V t. Similarly, the
determinant can be computed efficiently using the matrix determinant lemma:

|Id + σ2
tk−1|tkU t + σ2

tk−1|tkV tV
T
t | = |Id + σ2

tk−1|tkU t| · |Ir + Ṽ tṼ
T

t |.

More details are in the Appendix C.4.

4 THEORETICAL ANALYSIS

In the theoretical analysis, we set tk = k and N = T , and specify the noise schedule βt similar to Li
et al. (2023) (details in Appendix B), and assume the following assumptions.

Assumption 1 (Boundedness of the Distribution). The original data distribution q0 possesses a
bounded second-order moment such that EX∼q0∥X∥

2 ≤M2 for a positive constant M2.

Assumption 2 (L2 Score Estimation Error). The estimated score function ŝt(x) satisfies
T−1

∑T
t=1 EX∼qt∥∇ log qt(X)− ŝt(X)∥2 ≤ ε2s for a constant εs > 0.

Assumption 3 (Frobenius Hessian Estimation Error). The estimated Hessian function Ĥt(x) satisfies
T−1

∑T
t=1 EX∼qt∥∇2 log qt(X)− Ĥt(X)∥2F ≤ ε2H for a constant εH > 0.

Assumption 4. The true Hessian function∇2 log qt(x) satisfies λmin((1−αt)∇2 log qt(x)) ≥ ε0 >
−1, where ε0 is constant.

Assumption 1-3 are standard in the literature (Li et al., 2023; 2024; Benton et al., 2023; Chen et al.,
2023). Assumption 4 is relatively mild. By Proposition 2, we know that Id+(1−αt)∇2 log qt(x) ⪰ 0,
which implies that all eigenvalues of (1− αt)∇2 log qt(x) must be greater than or equal to −1.

Theorem 1 (Non-asymptotic Bound for Distributions with Bounded Moments). Under Assumptions
1-4, the generated distribution p̃0 by Sampler (13) satisfies

TV(q0||p̃0) ≤
√

1

2
KL(q0||p̃0) ≲

d3 log4.5 T

T
+
√
log Tεs +

log T√
T

εH . (17)

Theorem 1 provides non-asymptotic convergence guarantees for the stochastic sampler (13). The error
bound consists of three terms: the reverse step error that scales as O(d3 log4.5 T/T ), reflecting the
discrepancy between forward and reverse transition densities; the score estimation error and Hessian
estimation errors which are O(

√
log T ) and O(log T/

√
T ), respectively, due to utilization of mean

and covariance information in the sampling procedure. To achieve the ε-accuracy approximation
error, assuming the exact score, the total number of time steps T should be O(d3/ε).

In the following theorem, we consider an oracle parametric setting where the score can be written as
st(x; θ) = ∇ log qt(x; θ) for a finite-dimensional parameter θ. Thus, unlike the nonparametric neural-
network setting where we denote network weights by ϕ, here θ directly indexes the data-generating
family Fθ.

Theorem 2 (Consistency under Oracle Model). Suppose st(x; θ) = ∇ log qt(x; θ) for any t ≥ 0.
Then, under conditions given in the Appendix B.4, the quasi-MLE θ̂n,T

p→ θ∗ in probability as
n, T →∞, where θ∗ is the parameter of the original data distribution q0.

The theorem shows that when the true form of the score function is accessible, the estimation by
minimizing the Likelihood Matching objective (15) converges to the true value.

5 EXPERIMENTS

This section reports empirical results to validate our theory and methodological insights through
numerical experiments on both synthetic datasets and image datasets. To ensure the reproducibility of
our results, we provide a comprehensive description of all experimental details, including experiment
setting, additional results, and an analysis of the computational time and memory consumption, in
Appendix C.
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Figure 2: Maximum Mean Discrepancy (MMD; lower is better) between generated and true samples
under two 1D mixture distributions: (a) Gaussian and (b) t with 3 degrees of freedom with respect to
the number of sampling steps N . (c) Fréchet Inception Distance (FID; lower is better) on the MNIST
dataset for different combinations of (N, r) under the Likelihood Matching framework.

5.1 SYNTHETIC DATASETS

Mixture Model. To analyze a known failure case of Score Matching, which can struggle to
accurately fit mixture distributions with well-separated modes (Koehler et al., 2023), we first
considered a two-component Gaussian mixture with equal weights and means located at -10 and
10, with unit variance. We also examined mixtures of the t-distributions with 3 degrees of freedom
under the same settings. We used a single-hidden-layer multilayer perceptron (MLP) to model both
the score and Hessian functions, and compared the performance of the Score Matching method
with the Likelihood Matching method using transition step N = 2, 3, and 8. For evaluation, we
used the Maximum Mean Discrepancy (MMD, Gretton et al. 2012), which employed five Gaussian
kernels with bandwidths {2−2, 2−1, 20, 21, 22}. The results, averaged over 100 independent trials,
are reported in Figures 2 (a)-(b), which show that the proposed LM consistently outperformed the
Score Matching, and the performance of the LM improved as N increases.

Parameter Estimation. We evaluated the LM approach on a two-dimensional Gaussian mixture
distribution, i.e., q0(x) ∼ ω1N2(µ1, σ

2
1I2) + (1 − ω1)N2(µ2, σ

2
2I2), where the score model (with

the true oracle score) can be derived analytically. Using ground truth parameters µ1 = (1, 2)T ,
µ2 = (−1,−3)T , σ1 =

√
0.3, σ2 =

√
0.6 and ω1 = 1/3, we compared parameter estimation

between the Likelihood Matching (LM) and Score Matching methods. For sample sizes n = 100 and
200 (500 replicates each), we report the mean absolute error (MAE) and standard error (Std. Error)
in Table 2 (Appendix C.2), which showed that the LM had consistently lower MAE and Std. Error
than the Score Matching. The decreasing estimation variance of the LM with increasing sample size
supported the consistency guarantee in Theorem 2.

5.2 IMAGE DATASETS

The performance of the Likelihood Matching is expected to improve as both N and r increase. To
verify this, we trained the Likelihood Matching model on the MNIST dataset under different settings
of (N, r). The FID (Fréchet Inception Distance) for each setting is presented in Figure 2 (c), which
aligns well with the expectation.

We evaluated our LM framework on the CIFAR-10 and CelebA 64x64 datasets, comparing it against
a SM baseline. As shown in Table 1, the LM method consistently outperforms SM across all metrics.
Notably, even with a simple diagonal Hessian approximation (r = 0), LM achieves a lower FID
on both CIFAR-10 (3.12 vs. 3.15) and CelebA (2.69 vs. 2.71), alongside improved negative log-
likelihood (NLL) where the NLL metric is computed directly in the discrete SDE formulation by
evaluating the exact Gaussian likelihood of the residuals under the learned covariance, as detailed in
Appendix C.

The performance gains become more significant as the rank of the Hessian approximation increases,
peaking around r = 20 − 30. This demonstrates a clear benefit from incorporating covariance
information. For instance, LM with r = 30 achieves a FID of 3.03 on CIFAR-10 and 2.62 on CelebA,
a notable improvement over the SM baseline. These results provide strong empirical evidence that
our likelihood-based objective is fundamentally more effective than score matching for training
high-fidelity generative models.

We then performed sampling on the MNIST dataset using the sampler described (13) based on the
trained Likelihood Matching (N = 2, r = 10) and the Score Matching, where the Hessian function
in Score Matching is fixed as zero. Both methods perform well with a large number of sampling steps.
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Table 1: Quantitative comparison on CIFAR-10 and CelebA 64x64. LM with fixed transition steps
(N = 2) and varying Hessian ranks (r) is compared against the Score Matching (SM) baseline. FID
(↓) and NLL (↓) indicate lower is better, while IS (↑) indicates higher is better.

CIFAR10 FID ↓ CIFAR10 IS ↑ CIFAR10 NLL (bpd) ↓ CelebA 64× 64 FID ↓
SM 3.15 9.47 ± 0.10 3.28 2.71

LM (r = 0) 3.12 9.47 ± 0.11 3.24 2.69
LM (r = 10) 3.04 9.46 ± 0.13 3.15 2.67
LM (r = 20) 3.01 9.48 ± 0.14 3.13 2.65
LM (r = 30) 3.03 9.45 ± 0.13 3.11 2.62

LM (r = 100) 3.05 9.46 ± 0.12 3.12 2.63
LM (r = 200) 3.09 9.46 ± 0.15 3.13 2.64

Figure 4 (Appendix C.2) presents the results under fewer sampling steps, where we observe that
Likelihood Matching exhibits faster convergence and better preservation of the structural integrity of
the generated images. Qualitatively, after only 20 reverse iterations the LM sampler already produces
clearly recognizable digits, whereas the corresponding SM samples remain noticeably more blurred
and less structured, indicating that the Hessian-based covariance improves the per-step accuracy of
the reverse transition and effectively reduces the number of sampling steps needed to reach a given
visual quality.

A more detailed analysis of training and sampling time, as well as GPU memory usage, is given in
Appendix C. In particular, Table 3 reports the overhead on CIFAR-10, while Table 4 shows that on
224 × 224 ImageNet our method increases training time by roughly 3–4× and memory by about
2–3× over the SM baseline, confirming both the scalability challenge and the current computational
feasibility of LM.

5.3 ABLATION STUDIES

Marginal Benefit of Hessian. To isolate the contribution of the learned Hessian, we conducted
an ablation study on MNIST where the score network was trained but the Hessian was set to a fixed
identity matrix Ht ≡ I . This score-only LM variant resulted in significantly worse FID scores (10.28
for N = 2 and 9.75 for N = 3) compared to the full LM model, confirming that explicitly modeling
the covariance is crucial for performance. Empirically, we find that relatively small ranks yield the
best trade-off between performance and computational cost. As shown in Table 1, moving from a
diagonal Hessian (r = 0) to r = 20-30 brings noticeable gains, while higher ranks (r = 100, 200)
offer diminishing returns. Therefore, we recommend r ∈ [10, 30] as a practical guideline for standard
image benchmarks.

6 CONCLUSION

This work introduces the Likelihood Matching method for training diffusion models, which is
grounded in the Maximum Likelihood Estimation, by leveraging on the Quasi-Maximum Likelihood
Estimation (QMLE). The approach inherently integrates both score and covariance matching, distin-
guishing it from the score matching that focuses solely on a single transition density and utilizes only
the first-order moment information. Our theoretical analysis establishes the consistency of the QMLE
and provides non-asymptotic convergence guarantees for the proposed sampler quantifying the impact
of the score and Hessian estimation errors, dimensionality, and diffusion steps. Empirical evaluations
on image datasets demonstrated the viability of the proposed approach and elucidated the influence of
methodological choices such as Hessian approximation rank. Our comprehensive evaluations show
that LM consistently outperforms the foundational SM baseline in generation quality and likelihood
estimation, with a manageable and scalable increase in computational cost.

Building upon this robust foundation, future directions involve exploring the application of our
methods to more challenging, high-dimensional data domains, such as high-resolution natural images
or video generation. Concurrently, enhancing the computational efficiency of both the training and
sampling procedures represents another promising avenue for further research, aimed at broadening
the practical applicability of LM. In particular, the computational burden of Hessian modeling on
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large-scale datasets remains substantial, and alleviating this limitation is an important direction for
future work. Our LM objective is also complementary to the rich body of work on optimal covariance
design and non-Gaussian transition approximations in diffusion models, and combining LM with such
advanced solvers on large-scale benchmarks such as ImageNet is an especially promising direction.
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APPENDIX

A ALGORITHM

Algorithm 1: Likelihood Matching without time random sampling

Input: Dataset D = {X(i)
0 }ni=1

IID∼ q0, pre-determined time step set T = {tk}N−1
k=1 , learning rate

η, batch size B
Output: Trained model: ŝt(Xt;ϕ) and Ĥt(Xt;ϕ)

1 // Training
2 while not converge do
3 foreach batch do
4 Get a mini-batch {X(i)

0 }Bi=1 from D (X(i)
0 is the i-th sample in the current batch);

5 for k = 1, 2, · · · , N do
6 Get perturbed data {X(i)

t }
tN
t=t0

7 Calculate the transition term log p̂tk−1|tk(X
(i)

t
(i)
k−1

|X(i)

t
(i)
k

;ϕ)

8 end
9 Calculate the batch loss L(θ) = −B−1

∑B
i=1

∑N
k=1 log p̂tk−1|tk(X

(i)

t
(i)
k−1

|X(i)

t
(i)
k

;ϕ)

10 Update the parameter of st and Ht via stochastic gradient descent on:

ϕ← ϕ− η∇ϕL(ϕ)

11 end
12 end
13 Obtain the trained ŝt(Xt;ϕ) and Ĥt(Xt;ϕ) // Also obtain the estimated parameter ϕ̂

Algorithm 2: Likelihood Matching with time random sampling

Input: D = {X(i)
0 }ni=1

IID∼ q0, learning rate η, batch size B, the number of chosen time points
N

Output: Trained model: ŝt(Xt;ϕ) and Ĥt(Xt;ϕ)
1 // Training
2 while not converge do
3 foreach batch do
4 Get a mini-batch {X(i)

0 }Bi=1 from D (X(i)
0 is the i-th sample in the current batch);

5 Sample (t
(i)
1 , · · · , t(i)N−1) ∼ Unif{(0, T )} where t

(i)
1 < · · · < t

(i)
N−1 for i = 1, · · · , B

6 for k = 1, 2, · · · , N do
7 Get perturbed data {X(i)

t }
tN
t=t0

8 Calculate the transition term log p̂
t
(i)
k−1|t

(i)
k

(X
(i)

t
(i)
k−1

|X(i)

t
(i)
k

;ϕ)

9 end
10 Calculate the batch loss L(θ) = −B−1

∑B
i=1

∑N
k=1 log p̂t(i)k−1|t

(i)
k

(X
(i)

t
(i)
k−1

|X(i)

t
(i)
k

;ϕ)

11 Update the parameter of st and Ht via stochastic gradient descent on:

ϕ← ϕ− η∇ϕL(ϕ)

12 end
13 end
14 Obtain the trained ŝt(Xt;ϕ) and Ĥt(Xt;ϕ) // Also obtain the estimated parameter ϕ̂

14



B TECHNICAL RESULTS AND PROOFS

We first review the noise schedule proposed in Li et al. (2023). For sufficiently large constants
c0, c1 > 0, define

e−
∫ 1
0
βtdt = α1 =

1

T c0
,

e−
∫ t
t−1

βtdt = αt =
c1 log T

T
min{(1 + α1)(1 +

c1 log T

T
)t, 1}.

(18)

As established by Li et al. (2023), this specification ensures αt ≥ 1/2 and 1− αt ≲ log T/T .

B.1 PROOF OF PROPOSITION 1

According to the definition of a time-reversal process in Haussmann & Pardoux (1986), when βt of
(1) is bounded and

∫ T

0

∫
O(∥qt(x; θ)∥

2
+ d · βt∥∇qt(x; θ)∥2)dxdt <∞, the time-reversal process of

Xt exits, i.e., we have Yt
d
= Xt and Yt evolves from (2). Then the finite-dimensional distribution for

the process Yt is identically distributed as the associated distribution for process Xt. Therefore, we
have

qt0:tN (xt0 , xt1 , · · · , xtN ; θ) = pt0:tN (xt0 , xt1 , · · · , xtN ; θ), (19)
for every (xt0 , xt1 , · · · , xtN ; θ) ∈ RN+1 × Θ. Thus, if we take the logarithm of both sides of the
above equation, we will have

log qt0(Xt0 ; θ)+

N∑
k=1

log qtk|tk−1
(Xtk |Xtk−1

) = log ptN (XtN ; θ)+

N∑
k=1

log ptk−1|tk(Xtk−1
|Xtk ; θ).

(20)
Taking the expectation with respect to (X0, X1, · · · , XT ), we obtain (7) immediately.

B.2 PROOF OF PROPOSITION 2

By the definition of SDE (1), we have

Xt|Xs ∼ Nd

(
mt|sXs, σ

2
t|sId

)
,

where mt|s = exp{−
∫ t

s
βtdt/2} and σ2

t|s = 1− exp{−
∫ t

s
βtdt}. Then we have

∇Xt
log qt(Xt; θ) =

1

qt(Xt; θ)
∇Xt

qt(Xt; θ)

=
1

qt(Xt; θ)
∇Xt

∫
qt|s(Xt|Xs)qs(Xs; θ)dXs

=
1

qt(Xt; θ)

∫
∇Xt

qt|s(Xt|Xs)qs(Xs; θ)dXs

=

∫
qt|s(Xt|Xs)qs(Xs; θ)

qt(Xt; θ)
∇Xt log qt|s(Xt|Xs)dXs

=

∫
qs|t(Xs|Xt; θ)

mt|sXs −Xt

σ2
t|s

dXs

=
mt|sE(Xs|Xt)−Xt

σ2
t|s

(21)

which implies that

µs|t = E(Xs|Xt) =
Xt + σ2

t|s∇Xt
log qt(Xt)

mt|s
. (22)

For the covariance, note that

Σs|t = E(XsX
T
s |Xt)− E(Xs|Xt)E(Xs|Xt)

T .
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To derive the covariance, we need to compute the second gradient of log qt(Xt; θ). By taking the
gradient of (21) with respect to Xt and using the same argument as above, we have

∇2
Xt

log qt(Xt; θ) =

∫
mt|sXs

σ2
t|s

{
∇Xt

qs|t(Xs|Xt; θ)
}T

dXs −
1

σ2
t|s

Id

=

∫
mt|sXs

σ2
t|s

qs|t(Xs|Xt; θ)
{
∇Xt

log qs|t(Xs|Xt; θ)
}T

dXs −
1

σ2
t|s

Id

=

∫
qs|t(Xs|Xt; θ)

mt|sXs

σ2
t|s

{
∇Xt

log qt|s(Xt|Xs)−∇Xt
log qt(Xt; θ)

}T
dXs

− 1

σ2
t|s

Id

=

∫
qs|t(Xs|Xt; θ)

mt|sXs

σ2
t|s

{
∇Xt

log qt|s(Xt|Xs)
}T

dXs

−
mt|sE(Xs|Xt)

σ2
t|s

{∇Xt
log qt(Xt; θ)}T −

1

σ2
t|s

Id

=

∫
qs|t(Xs|Xt; θ)

mt|sXs

σ2
t|s

{
mt|sXs −Xt

σ2
t|s

}T

dXs

−
mt|sE(Xs|Xt)

σ2
t|s

{
mt|sE(Xs|Xt)−Xt

σ2
t|s

}T

− 1

σ2
t|s

Id

=

(
mt|s

σ2
t|s

)2{
E(XsX

T
s |Xt)− E(Xs|Xt)E(Xs|Xt)

T
}
− 1

σ2
t|s

Id.

Hence, we conclude

Σs|t =
σ4
t,s

m2
t|s
∇2

Xt
log qt(Xt; θ) +

σ2
t|s

m2
t|s

Id.

This completes the proof.

B.3 PROOF OF THEOREM 1

From Pinsker’s inequality, the first inequality is obvious. Thus, we focus on the second inequality.
By data-processing inequality, we have

KL(q0||p̃0) ≤ KL(q0:T ||p̃0:T )

= EX0:T∼q0:T

[
log

(
q0:T (X0, X1, · · · , XT )

p̃0:T (X0, X1, · · · , XT )

)]
= EX0:T∼q0:T

[
log

(
qT (XT )

p̃T (XT )

)
+

T∑
t=1

log

(
qt−1|t(Xt−1|Xt)

p̃t−1|t(Xt−1|Xt)

)]

= KL(qT ||p̃T )︸ ︷︷ ︸
I1: prior distribution error

+

T∑
t=1

EXt∼qt

[
KL
(
qt−1|t(·|Xt)||p̃t−1|t(·|Xt)

)]
︸ ︷︷ ︸

I2: transition density ratio error

(23)

With the above decomposition, we now start to bound the two terms.

B.3.1 STEP 1: CONTROLLING THE PRIOR DISTRIBUTION ERROR

Lemma 1. Under Assumptions 1, we have

KL(qT ||p̃T ) ≤
1

2
dᾱ2

T +
1

2
ᾱTM2 ≲

d

T 2c2
+

1

T c2
(24)

for T ≥ 1 and c2 ≥ 1000 is a large constant.
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The proof of Lemma 1 can be found in Appendix B.5.1.

B.3.2 STEP 2: CONTROLLING THE TRANSITION DENSITY RATIO ERROR

We follow a similar argument in Li et al. (2023) to bound the second term. To begin with, we define
the following true posterior mean and covariance mapping:

µ∗
t−1|t(Xt) =

1
√
αt

(Xt + (1− αt)∇ log qt(Xt)),

:=
1
√
αt

(Xt + (1− αt)s
∗
t (Xt)),

Σ∗
t−1|t(Xt) =

1− αt

αt

{
Id + (1− αt)∇2 log qt(Xt)

}
,

:=
1− αt

αt
{Id + (1− αt)H

∗
t (Xt)}.

(25)

and the estimated mapping as follows:

µ̂t−1|t(Xt) =
1
√
αt

(Xt + (1− αt)ŝt(Xt)),

Σ̂t−1|t(Xt) =
1− αt

αt

{
Id + (1− αt)Ĥt(Xt)

}
.

(26)

It is clear that the transition density of Ỹt−1 given Ỹt is

p̃t−1|t(Xt−1|Xt) =

(
2π

1− αt

αt

)− d
2 ∣∣∣Id + (1− αt)Ĥt(Xt)

∣∣∣− 1
2

· exp

{
− αt

2(1− αt)

∥∥∥∥(Id + (1− αt)Ĥt(Xt)
)− 1

2

(Xt−1 − µ̂t−1|t(Xt))

∥∥∥∥2
}
.

(27)

For any t, we introduce the following auxiliary sequences with the true score function and true
Hessian function of the marginal density qt as follows:

Ht−1 = µ∗
t−1|t(Ht) + Σ∗

t−1|t(Ht)
1/2Zt, (28)

where HT ∼ Nd(0, Id) and we define pHt and pHt−1|t as the marginal and transition density of Ht and
Ht−1|Ht. The transition density of Ht−1 given Ht is given by

pHt−1|t(Xt−1|Xt) =

(
2π

1− αt

αt

)− d
2

|Id + (1− αt)H
∗
t (Xt)|−

1
2

· exp
{
− αt

2(1− αt)

∥∥∥(Id + (1− αt)H
∗
t (Xt))

− 1
2 (Xt−1 − µ∗

t−1|t(Xt))
∥∥∥2}.

(29)

Hence, the term I2 can be bounded as follows:

I2 =

T∑
t=1

EXt∼qt

[
KL
(
qt−1|t(·|Xt)||p̃t−1|t(·|Xt)

)]
=

T∑
t=1

EXt∼qt

{
EXt−1∼qt−1|t

[
log

qt−1|t(Xt−1|Xt)

pHt−1|t(Xt−1|Xt)

]}
︸ ︷︷ ︸

I3: reverse step error

+

T∑
t=1

EXt∼qt

{
EXt−1∼qt−1|t

[
log

pHt−1|t(Xt−1|Xt)

p̃t−1|t(Xt−1|Xt)

]}
︸ ︷︷ ︸

I4: estimation error

(30)
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To control the term I3, we introduce the following set in Li et al. (2023) :

E =
{
(Xt−1, Xt) : − log qt(Xt) ≲ d log T, ∥Xt−1 −Xt/

√
αt∥2 ≲

√
d(1− αt) log T

}
. (31)

Turning to qt−1|t(Xt−1|Xt) over the set E , we have the lemma as below:

Lemma 2. There exists some large enough numerical constant cs > 0 such that: for any (Xt−1, Xt) ∈
E , we have

qt−1|t(Xt−1|Xt)

=

(
2π

1− αt

αt

)− d
2

|Id + (1− αt)H
∗
t (Xt)|−

1
2

· exp
{
− αt

2(1− αt)

∥∥∥(Id + (1− αt)H
∗
t (Xt))

− 1
2 (Xt−1 − µ∗

t−1|t(Xt))
∥∥∥2 + εt(Xt−1, Xt)

}
,

(32)

where the residual term εt(Xt−1, Xt) satisfies

|εt(Xt−1, Xt)| ≤ cs
d3 log4.5 T

T 3/2
. (33)

The proof of Lemma 2 is provided in Appendix B.5.2.

We can observe that under the set E , the transition density pHt−1|t(Xt−1|Xt) is nearly equal to the
transition density pHt−1|Ht

(Xt−1|Xt) defined in Li et al. (2024). With the proof of Lemma 11 in Li
et al. (2024) and using (55) and (56), we know that

(Id + (1− αt)H
∗
t (Xt))

−1 = (Id +
1

2
(1− αt)H

∗
t (Xt))

−2 +A, (34)

where

∥A∥ ≲ d2 log4 T

T 2
. (35)

Therefore, we have
pHt−1|t(Xt−1|Xt)

pHt−1|Ht
(Xt−1|Xt)

= 1 +O

(
d3 log5 T

T 2

)
. (36)

Then, we introduce some useful lemmas established by Li et al. (2024).

Lemma 3 (Lemma 11 in Li et al. (2024)). For every (Xt, Xt−1) ∈ E , we have

pHt−1|Ht
(Xt−1|Xt)

∝ exp

{
− αt

2 (1− αt)

∥∥∥(I + (1− αt)H
∗
t (Xt))

−1
(
Xt−1 − µ∗

t−1|t(Xt)
)∥∥∥2 +O

(
d3 log5 T

T 2

)}
.

(37)

Lemma 4 (Lemma 13 in Li et al. (2024)). For all (Xt, Xt−1) ∈ Rd × Rd, we have

log
qt|t−1 (Xt−1|Xt)

pHt−1|Ht
(Xt−1|Xt)

≤ T c0+2cR+2
{
∥Xt−1 −Xt/

√
αt∥22 + ∥Xt∥22 + 1

}
,

where c0 is defined in (18) and cR is defined in Lemma 3 in Li et al. (2024).

By (36), we know that Lemmas 3 and 4 can be applied in our cases. And with Lemma 2, one can
repeat the arguments in the proof of Lemma 14 in Li et al. (2024), and get the same results as follows:

I3 =

T∑
t=1

EXt∼qt

[
KL
(
qt−1|t(·|Xt)||pHt−1|t(·|Xt)

)]
≲

T∑
t=1

d6 log9 T

T 3
≍ d6 log9 T

T 2
. (38)

To control the term I4, we introduce the following lemma.
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Lemma 5. Under Assumptions 2, 3 and 4, we have
T∑

t=1

EXt∼qt

{
EXt−1∼qt−1|t

[
log

pHt−1|t(Xt−1|Xt)

p̃t−1|t(Xt−1|Xt)

]}
≲ log Tε2s +

log2 T

T
ε2H . (39)

The proof of Lemma 5 can be found in Appendix B.5.2.

Combining (38) and Lemma 5 yields

I2 ≲
d6 log9 T

T 2
+ log Tε2s +

log2 T

T
ε2H . (40)

Therefore, from Lemma 1 and (40), we arrive at

KL(q0||p̃0) ≲
d

T 2c2
+

1

T c2
+

d6 log9 T

T 2
+ log Tε2s +

log2 T

T
ε2H

≍ d6 log9 T

T 2
+ log Tε2s +

log2 T

T
ε2H

(41)

thereby concluding the proof of Theorem 1.

B.4 PROOF OF THEOREM 2

Denoted by

M̃n,T (θ) :=
1

n

n∑
i=1

log q0:T (X
(i)
0 , X

(i)
1 , ..., X

(i)
T ; θ),

M̂n,T (θ) :=
1

n

n∑
i=1

T∑
t=1

log p̂t−1|t(X
(i)
t−1|X

(i)
t ; θ) +

1

n

n∑
i=1

log p̃T (X
(i)
T ),

MT (θ) := EX0:T∼q0:T [log q0:T (X0, ..., XT ; θ)] ,

(42)

where p̃T (·) denotes the density for d-dimensional standard normal distribution, θ̂n,T :=

argminθ Jn,N (θ) = argmaxθ M̂n,T (θ), and θ̃n,T := argmaxθ M̃n,T (θ).

We assume that the following regularity conditions are satisfied

(1) The forward sampling procedure employs an equidistant grid with step size ∆, which maintains an
inverse proportionality relationship with the terminal time T .

(2) supθ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣ p→ 0, as n, T →∞.

(3) For any ϵ > 0, there exits a constant η, such that
sup

|θ−θ∗|≥ϵ

MT (θ) < MT (θ
∗)− η, for ∀n, T.

(4) We suppose a uniform logarithmic approximation as follows:

sup
θ,x0,··· ,xT

∣∣∣∣log( q0:T−1|T (x0, x1, ..., xT−1|xT ; θ)

p̂0:T−1|T (x0, x1, ..., xT−1|xT ; θ)

)∣∣∣∣ ≤ ϵ2(T ),

where limT→∞ ϵ2(T ) = 0.

The first two conditions are basically modified From Theorem 5.7 of Van der Vaart (2000) to ensure
the consistency of true maximum likelihood estimation obtained from M̃n,T (θ) , i.e., θ̃n,T . And the
third and fourth can be intuitively interpreted as the approximated likelihood behaves well, namely,
the error can be uniformly bounded.

We observe that
M̃n,T (θ̃n,T ) ≥ M̃n,T (θ

∗)

= MT (θ
∗) + M̃n,T (θ

∗)−MT (θ
∗)

≥ MT (θ
∗)− sup

θ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣ . (43)
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Thus, combined with (43), we obtain

MT (θ
∗)−MT (θ̃n,T ) ≤ M̃n,T (θ̃n,T )−MT (θ̃n,T ) + sup

θ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣

≤ 2 sup
θ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣ . (44)

Similarly to (43), we have the following results for θ̂n,T , i.e.,

M̂n,T (θ̂n,T ) ≥ M̂n,T (θ
∗)

= MT (θ
∗) + M̂n,T (θ

∗)−MT (θ
∗)

≥ MT (θ
∗)− sup

θ

∣∣∣M̂n,T (θ)−MT (θ)
∣∣∣ , (45)

and

MT (θ
∗)−MT (θ̂n,T ) ≤ M̂n,T (θ̂n,T )−MT (θ̂n,T ) + sup

θ

∣∣∣M̂n,T (θ)−MT (θ)
∣∣∣

≤ 2 sup
θ

∣∣∣M̂n,T (θ)−MT (θ)
∣∣∣ , (46)

by plugging (45) into the first inequality.

Therefore, we are motivated to investigate how large supθ

∣∣∣M̂n,T (θ)−MT (θ)
∣∣∣ will be. We notice

that

sup
θ

∣∣∣M̂n,T (θ)−MT (θ)
∣∣∣ ≤ sup

θ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣+ sup

θ

∣∣∣M̃n,T (θ)− M̂n,T (θ)
∣∣∣ . (47)

Since supθ |M̃n,T (θ)−MT (θ)| is an op(1) term, we only need to compute supθ |M̃n,T (θ)−M̂n,T (θ)|.
Notice that

M̃n,T (θ)− M̂n,T (θ)

=
1

n

n∑
i=1

log

(
q0:T−1|T (X

(i)
0 , X

(i)
1 , ..., X

(i)
T−1|X

(i)
T ; θ)

p̂0:T−1|T (X
(i)
0 , X

(i)
1 , ..., X

(i)
T−1|X

(i)
T ; θ)

)
+

1

n

n∑
i=1

log

(
qT (X

(i)
T )

p̃T (X
(i)
T )

)
,

and from Condition (3), we have

sup
θ,x0,··· ,xT

∣∣∣∣log( q0:T−1|T (x0, x1, ..., xT−1|xT ; θ)

p̂0:T−1|T (x0, x1, ..., xT−1|xT ; θ)

)∣∣∣∣ ≤ ϵ2(T ). (48)

Also, according to Lemma 1 and the law of large numbers, we have

1

n

n∑
i=1

log

(
qT (X

(i)
T )

p̃T (X
(i)
T )

)
p→ KL(qT ||p̃T ), (49)

which implies

1

n

n∑
i=1

log

(
qT (X

(i)
T )

p̃T (X
(i)
T )

)
= ϵ3(n, T ),

where ϵ3(n, T )
p→ 0, as n and T tend to∞. Thus, we can decompose (46) as

MT (θ
∗)−MT (θ̂n,T ) ≤ 2

(
sup
θ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣+ sup

θ

∣∣∣M̃n,T (θ)− M̂n,T (θ)
∣∣∣)

≤ 2 sup
θ

∣∣∣M̃n,T (θ)−MT (θ)
∣∣∣+ 2ϵ2(T ) + 2ϵ3(n, T ).

We observe that {θ : |θ − θ∗| ≥ ϵ} ⊂ {θ : MT (θ) < MT (θ
∗)− η} . Thus, when n, T is sufficiently

large, such that supθ |M̃n,T (θ) −MT (θ)| + ϵ2(T ) + ϵ3(n, T ) < η/2, we obtain |θ̂n,T − θ∗| < ϵ,
which leads to

θ̂n,T
p→ θ∗, as n, T →∞. (50)
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B.5 PROOF OF AUXILIARY LEMMAS

B.5.1 PROOF OF LEMMA 1

Note that p̃T (XT ) isNd(0, Id) and qt|0(x|y) = N (x;mty, σ
2
t Id), where mt =

√
ᾱt and σ2

t = 1−ᾱt,
we obtain

KL(qt|0(·|y)||Nd(0, Id)) =
1

2

(
−d(1− σ2

t )− d log σ2
t +m2

t∥y∥
2
)
.

By the convexity of the KL divergence, we have

KL(qT ||Nd(0, Id)) = KL

(∫
Rd

qT |0(x|y)dQ0(y)||Nd(0, Id)

)
≤
∫
Rd

KL(qT |0(·|y)||Nd(0, Id))dQ0(y)

=
1

2

∫
Rd

(
−d(1− σ2

T )− d log σ2
T +m2

T ∥y∥
2
)
dQ0(y)

=
1

2

(
−d(1− σ2

T )− d log σ2
T +m2

TEX∼q0∥X∥
2
)

≤ 1

2
(−dᾱT − d log(1− ᾱT ) + ᾱTM2).

(51)

Since log(1 + x) > x− x2 when x > −0.68 and ᾱT < 0.68 when T ≥ 1, we obtain

− log(1− ᾱT ) < ᾱT + ᾱ2
T .

Thus
KL(qT ||p̃T ) ≤

1

2
dᾱ2

T +
1

2
ᾱTM2 ≲

d

T 2c2
+

1

T c2
, (52)

where c2 ≥ 1000 and the last inequality holds by the properties of the noise schedule in Li et al.
(2023).

B.5.2 PROOF OF LEMMA 2

Lemma 12 in Li et al. (2023) shows that the transition density of Xt−1 given Xt can be expressed as

qt−1|t(Xt−1|Xt) = f1(Xt) exp {−f2(Xt−1, Xt) + εt,1(Xt−1, Xt)} (53)

for some function f1(·), where

f2(Xt−1, Xt)

=
αt

2(1− αt)

{(
Xt−1 − µ∗

t−1|t(Xt)
)T

(Id − (1− αt)H
∗
t (Xt))

(
Xt−1 − µ∗

t−1|t(Xt)
)} (54)

and

|εt,1(Xt−1, Xt)| ≲
d3 log4.5 T

T 3/2
.

Note that the formulation of the covariance matrix Id− (1−αt)H
∗
t (Xt) still differs from (Id +(1−

αt)Ĥt(Xt))
−1. Following the same procedure in Li et al. (2023), we can show that

(Id + (1− αt)H
∗
t (Xt))

−1 = Id − (1− αt)H
∗
t (Xt) +A, (55)

where A is a matrix obeying

∥A∥ ≲ d2 log4 T

T 2
. (56)

Combining the above, we arrive at

qt−1|t(Xt−1|Xt) = f3(Xt) exp {−f4(Xt−1, Xt) + εt,2(Xt−1, Xt)} (57)

for some function f3(·), where

f4(Xt−1, Xt)

=
αt

2(1− αt)

{(
Xt−1 − µ∗

t−1|t(Xt)
)T

(Id − (1− αt)H
∗
t (Xt))

−1
(
Xt−1 − µ∗

t−1|t(Xt)
)}

(58)
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and

|εt,2(Xt−1, Xt)| ≲
d3 log4.5 T

T 3/2
.

Repeating Step 3 in the proof of Lemma 8 in Li et al. (2023), it yields that

f3(Xt) =

(
1 +O

(
d3 log4.5 T

T 3/2

))(
2π

1− αt

αt

)− d
2

|Id + (1− αt)H
∗
t (Xt)|−

1
2 .

This completes the proof.

B.5.3 PROOF OF LEMMA 5

Considering the approach in Liang et al. (2024), we directly calculate the density ratio between two
Gaussian distributions with the different mean and different covariance. We have

log
pHt−1|t(Xt−1|Xt)

p̃t−1|t(Xt−1|Xt)

=
1

2
log

det
(
Id + (1− αt)Ĥt(Xt)

)
det(Id + (1− αt)H∗

t (Xt))

+
αt

2(1− αt)
(Xt−1 − µ̂t−1|t(Xt))

T

·
{
(Id + (1− αt)Ĥt(Xt))

−1 − (Id + (1− αt)H
∗
t (Xt))

−1
}
(Xt−1 − µ̂t−1|t(Xt))

+
αt

2(1− αt)
(Xt−1 − µ̂t−1|t(Xt))

T (Id + (1− αt)H
∗
t (Xt))

−1(Xt−1 − µ̂t−1|t(Xt))

− αt

2(1− αt)
(Xt−1 − µ∗

t−1|t(Xt))
T (Id + (1− αt)H

∗
t (Xt))

−1(Xt−1 − µ∗
t−1|t(Xt))

=
1

2
log

det
(
Id + (1− αt)Ĥt(Xt)

)
det(Id + (1− αt)H∗

t (Xt))

+
αt

2(1− αt)
(µ∗

t−1|t(Xt)− µ̂t−1|t(Xt))
T

· (Id + (1− αt)H
∗
t (Xt))

−1(µ∗
t−1|t(Xt)− µ̂t−1|t(Xt))

+
αt

2(1− αt)
(Xt−1 − µ∗

t−1|t(Xt))
T
{
(Id + (1− αt)Ĥt(Xt))

−1 − (Id + (1− αt)H
∗
t (Xt))

−1
}

· (Xt−1 − µ∗
t−1|t(Xt))

+
αt

2(1− αt)
(Xt−1 − µ∗

t−1|t(Xt))
T
{
(Id + (1− αt)Ĥt(Xt))

−1 − (Id + (1− αt)H
∗
t (Xt))

−1
}

· (µ̂∗
t−1|t(Xt)− µ̂t−1|t(Xt))

+
αt

2(1− αt)
(µ̂∗

t−1|t(Xt)− µ̂t−1|t(Xt))
T
{
(Id + (1− αt)Ĥt(Xt))

−1

− (Id + (1− αt)H
∗
t (Xt))

−1
}
· (Xt−1 − µ∗

t−1|t(Xt)).

(59)

For the last two terms in (59), we can observe that under the expectation w.r.t Xt−1 ∼ qt−1|t, they
are both zero. Thus, by a little algebra, we have

EXt−1∼qt−1|t log
pHt−1|t(Xt−1|Xt)

p̃t−1|t(Xt−1|Xt)

=
1

2
log

det
(
Id + (1− αt)Ĥt(Xt)

)
det(Id + (1− αt)H∗

t (Xt))


+

αt

2(1− αt)
(µ∗

t−1|t(Xt)− µ̂t−1|t(Xt))
T (Id + (1− αt)H

∗
t (Xt))

−1(µ∗
t−1|t(Xt)− µ̂t−1|t(Xt))

+
1

2
EXt−1∼qt−1|t tr

[
(Id + (1− αt)Ĥt(Xt))

−1(Id + (1− αt)H
∗
t (Xt))− d

]
.

(60)

22



Considering the second term in (60) and from Assumption 4, we obtain that

αt

2(1− αt)
EXt∼qt

[
(µ∗

t−1|t(Xt)− µ̂t−1|t(Xt))
T (Id + (1− αt)H

∗
t (Xt))

−1

· (µ∗
t−1|t(Xt)− µ̂t−1|t(Xt))

]
=
1− αt

2
EXt∼qt

[
(s∗t (Xt)− ŝt(Xt))

T
(Id + (1− αt)H

∗
t (Xt))

−1(s∗t (Xt)− ŝt(Xt))
]

≤1− αt

2
EXt∼qt

[
∥s∗t (Xt)− ŝt(Xt)∥2

∥∥(Id + (1− αt)H
∗
t (Xt))

−1
∥∥]

≤ 1− αt

2(1 + ε0)
EXt∼qt∥s∗t (Xt)− ŝt(Xt)∥2

≲
1− αt

2
EXt∼qt∥s∗t (Xt)− ŝt(Xt)∥2.

(61)

For the first term in (60), the term 1 − αt is small enough when t is large, thus we can use Taylor
expansion to show that

EXt∼qt log(det(Id + (1− αt)H
∗
t (Xt)))

=EXt∼qt log

(
1 + (1− αt) tr(H

∗
t (Xt)) +

(1− αt)
2

2
tr(H∗

t (Xt))
2

− (1− αt)
2

2
tr
(
H∗

t (Xt)
2
)
+O((1− αt)

3)

)
=EXt∼qt

[
(1− αt) tr(H

∗
t (Xt))−

(1− αt)
2

2
tr
(
H∗

t (Xt)
2
)]

+O((1− αt)
3).

(62)

Thus, by the same argument, we get

1

2
EXt∼qt log

det
(
Id + (1− αt)Ĥt(Xt)

)
det(Id + (1− αt)H∗

t (Xt))
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2
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(
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2

2
tr
(
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2
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+O((1− αt)
3).

(63)

For the third term in (60), we have

1

2
EXt−1∼qt−1|t tr

[
(Id + (1− αt)Ĥt(Xt))

−1(Id + (1− αt)H
∗
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]
=
1

2
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[
(Id − (1− αt)Ĥt(Xt) + (1− αt)

2Ĥt(Xt)
2 +O((1− αt)

3))

· (Id + (1− αt)H
∗
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=
1

2
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[
(1− αt) tr(H

∗
t (Xt))− (1− αt) tr

(
Ĥt(Xt)

)
+ (1− αt)

2 tr
(
Ĥt(Xt)

2
)]

+O((1− αt)
2).

(64)
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Combining (61), (63) and (64), we arrive at

EXt∼qt

{
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(1− αt)
2
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(
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F

+O((1− αt)
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(65)

Consequently, we can demonstrate that
T∑

t=1

EXt∼qt

{
EXt−1∼qt−1|t log

pHt−1|t(Xt−1|Xt)

p̃t−1|t(Xt−1|Xt)

}
≲

1− αt

2
Tε2s +

(1− αt)
2

2
Tε2H

≲ log Tε2s +
log2 T

T
ε2H .

(66)

This completes the proof.

C EXPERIMENT DETAILS

C.1 EXPERIMENT SETTING

Synthetic 1D and 2D mixture experiments. We conducted experiments on synthetic 1D and
2D mixture distributions to evaluate the performance of our Likelihood Matching (LM) and Score
Matching (SM) methods under controlled conditions. In the non-oracle setting, where the true
parametric form of the data distribution is unknown, we trained fully connected neural networks
with a single hidden layer and ReLU activation functions to approximate the score and covariance
terms. Models were trained for 500 epochs using the Adam optimizer with a learning rate of 0.01
and full-batch gradient descent.

Real image datasets. We further evaluated our method on several standard image generation
benchmarks: MNIST (32×32 grayscale, Deng 2012), CIFAR-10 (32×32 RGB), CelebA (64×64
RGB, Liu et al. 2015), LSUN Church and LSUN Bedroom (64×64 RGB, Yu et al. 2016). All image
data were normalized to the range [−1, 1].
We adopted a U-Net architecture for both the score function and the Hessian function approximation,
following previous work in score-based diffusion modeling. For the Hessian network, the number of
output channels is set to (r + 1)× C, where r is the predefined low-rank parameter and C denotes
the number of image channels. The Hessian function is modeled using a spiked structure following
Meng et al. (2021):

Ht(Xt;ϕ) = U t(Xt;ϕ) + V t(Xt;ϕ)V t(Xt;ϕ)
T ,

where U t ∈ Rd is a diagonal matrix and V t ∈ Rd×r represents the low-rank component. We applied
a ReLU activation to the output of U t to ensure the positive definiteness of Ht.

In the experiments, we set time steps T = 1. For clarity, the score network uses a standard U-Net
with 4 down/up blocks, 2 ResNet layers per block, and channels (128, 256, 256, 512), with attention
in the third down and second up blocks. The Hessian network follows the same structure but uses 1
ResNet layer per block and smaller channels (64, 128, 128, 128). Its output is (1 + r) times the input
channels, representing a diagonal-plus-low-rank structure following Meng et al. (2021).
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All models were trained for 500,000 iterations using the Adam optimizer with (β1, β2) = (0.9, 0.999)
and a learning rate of 10−4. We adopted a linear noise schedule with β(0) = 0.1 and β(T ) = 20,
consistent with the settings in Song et al. (2021c). Training was performed on NVIDIA A100 GPUs.
The batch size was set to 128 for MNIST and CIFAR-10, and 64 for CelebA, LSUN Church, and
LSUN Bedroom. We applied Exponential Moving Average (EMA) to model parameters with a
decay rate of 0.9999 to improve stability during training and sampling. For evaluation, we computed
the Fréchet Inception Distance (FID) using the torchmetrics module with feature dimension
2048. FID was calculated based on 10,000 generated samples per dataset. Prior to evaluation, all
images were resized and center-cropped to 299× 299 pixels, and grayscale images (e.g., MNIST)
were replicated across the RGB channels to match the input format of the InceptionV3 model. For
likelihood evaluation, we compute the NLL directly under the discrete SDE by evaluating the exact
Gaussian likelihood of the residuals using the learned covariance.

C.2 ADDITIONAL RESULTS

Figure 3 shows us the comparisons between the discrepancies between the original data (Mixture
Gaussian) and the synthetic data by LM. In particular, for the one-dimensional case, we use the kernel
density estimation tool to visualize the densities obtained from both synthetic data and the original
data in Figure 3a. For the two-dimensional case, we illustrate the difference between the synthetic
data and the original data using scatter plots in Figure 3b. From both figures, we see that our synthetic
data indeed learn the associated underlying densities of the original data.

Figure 5 also presents sample generations from the Likelihood Matching method (N = 2, r = 10)
on the CIFAR10, CelebA, LSUN Church and LSUN Bedroom datasets.
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Figure 3: Comparison of original and synthetic data. (a) Kernel Density Estimations (KDE) for the
1-dimensional case. (b) Clustering results for the 2-dimensional case.

C.3 COMPUTATIONAL ANALYSIS

While introducing a Hessian network increases computational overhead, our framework remains
scalable due to the low-rank approximation and efficient implementation using the Sherman-Morrison-
Woodbury formula (see Appendix C.4). On a single A100 GPU for CIFAR-10, training time per
iteration increased from 0.291s (SM) to a manageable 0.599s for a diagonal Hessian (r = 0) and
0.756s for r = 200. Similarly, sampling time per 1000 steps grew from 12.66s to 27.65s. This
analysis demonstrates a favorable trade-off between performance gains and computational cost. A
detailed breakdown of runtime and memory usage is available in Table 3.

Memory usage also scaled controllably with Hessian rank r, remaining well within the practical
limits. Specifically, the full training required 36.2GB to 40.4GB (r = 0 to 200), representing 1.7-2.1
times of the SM baseline (17.2GB). Crucially, our Hessian-only training mode, where the score
network remained fixed, reduced the overhead to just 8.3GB (r = 0) to 13.3GB (r = 200). Growing
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Figure 4: Sampling on MNIST. Both Likelihood Matching and Score Matching use the sampler (13),
with the Hessian function set to zero in the case of Score Matching.

Figure 5: Unconditional samples generated by proposed method on 32×32 CIFAR10 (top two rows),
64×64 CelebA (upper middle), 64×64 LSUN Church (lower middle), and 64×64 LSUN Bedroom
(bottom row).
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Table 2: Comparison of parameter estimations for the two-dimensional mixture

(a) Estimation by Likelihood Matching

Parameter n = 100 n = 200

MAE Std. Error MAE Std. Error

µ11 0.0840 0.1065 0.0596 0.0733
µ12 0.0838 0.1045 0.0549 0.0698
µ21 0.0842 0.1057 0.0591 0.0727
µ22 0.0841 0.1039 0.0627 0.0783
σ1 0.2550 0.0556 0.2520 0.0364
σ2 0.1831 0.0753 0.1814 0.0531
ω1 0.1249 0.1529 0.0829 0.1042

(b) Estimation by Score Matching

Parameter n = 100 n = 200

MAE Std. Error MAE Std. Error

µ11 0.1137 0.1408 0.0800 0.0985
µ12 0.1092 0.1344 0.0768 0.0955
µ21 0.1185 0.1500 0.0853 0.1079
µ22 0.1164 0.1480 0.0840 0.1064
σ1 0.2519 0.0745 0.2468 0.0508
σ2 0.1818 0.0990 0.1820 0.0707
ω1 0.1566 0.1923 0.1154 0.1409

r from 100 to 200 increased memory by only 16% (11.5GB to 13.3GB), demonstrating efficient
memory management even at high approximation fidelity.

The computing comparison results on high-resolution ImageNet are shown in Table 4, which indicate
that the computational burden increases notably at higher resolution and may require further, dedicated
research to fully address.

Table 3: Training and sampling cost of the LM with different Hessian ranks r on CIFAR-10 (A100,
batch size 256). “Hessian Time” and “Hessian Mem” refer to the additional cost of training the
Hessian alone with a fixed score network.

Training Time (s/it) Training Mem (MB) Hessian Time (s/it) Hessian Mem (MB) Sampling Time (s/1000 iters)

SM 0.291 17,247 / / 12.66
LM (r = 0) 0.599 36,220 0.303 8,286 20.83

LM (r = 20) 0.617 36,428 0.324 8,418 21.48
LM (r = 100) 0.664 38,822 0.369 11,452 23.61
LM (r = 200) 0.756 40,444 0.463 13,302 27.65

Table 4: Training and sampling cost of the LM with different Hessian ranks r on 224×224 ImageNet
(A100, batch size 4). “Hessian Time” and “Hessian Mem” refer to the additional cost of training the
Hessian alone with a fixed score network.

Training Time (s/it) Training Mem (MB) Hessian Time (s/it) Hessian Mem (MB) Sampling Time (s/1000 iters)

SM 0.155 17,183 / / 34.6
LM (r = 0) 0.566 49,287 0.362 28,943 68.5

LM (r = 20) 0.571 49,641 0.370 29,057 69.8
LM (r = 100) 0.583 50,213 0.384 29,913 71.2
LM (r = 200) 0.598 51,357 0.403 31,163 74.0

C.4 EFFICIENT IMPLEMENTATION OF TRAINING AND SAMPLING PROCEDURE

Likelihood Matching training and inference involve repeated evaluations of computationally intensive
linear algebra operations, including matrix inversion, matrix square roots, and determinant calcu-
lations. Given that image data typically resides in high-dimensional spaces (e.g., d > 1000), the
associated computational cost, on the order of O(d3), becomes prohibitive in practice. To mitigate
this issue, we adopt the diagonal-plus-low-rank covariance parameterization proposed by Meng et al.
(2021), modeling the covariance as

Ht(Xt;ϕ) = U t(Xt;ϕ) + V t(Xt;ϕ)V t(Xt;ϕ)
T ,

where U t(·;ϕ) : Rd → Rd×d is a diagonal matrix, and V t(·;ϕ) : Rd → Rd×r is a low-rank matrix
with a prespecified rank r ≪ d. For notational simplicity, we omit the dependence on (Xt;ϕ) and
associated superscripts/subscripts.

This structural assumption enables a series of simplifications that substantially reduce the computa-
tional cost of matrix operations.
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Lemma 6. For any vector X ∈ Rd, we have the following equalities:∣∣∣Id + σ2U + σ2V V T
∣∣∣ = ∣∣Id + σ2U

∣∣ · ∣∣∣Ir + Ṽ
T
Ṽ
∣∣∣ , (67)

XT
(
Id + σ2U + σ2V V T

)−1

X = X̃T X̃ − (Ṽ
T
X̃)T (Ir + Ṽ

T
Ṽ )−1(Ṽ

T
X̃), (68)(

Id + σ2U + σ2V V T
)1/2

X = (Id + σ2U)1/2(X + Ṽ Γ{(Λ− Ir)
1/2 − Ir}Λ−1ΓT Ṽ

T
X),

(69)

where X̃ = (Id + σ2U)−1/2X , Ṽ = σ(Id + σ2U)−1/2V and ΓTΛΓ = Ṽ
T
Ṽ is the eigen-

decomposition.

Proof. Equation (67) can be directly obtained by the matrix determinant lemma. For (68), denote
B = Id + σ2U . Applying the Sherman-Morrison-Woodbury formula yields:

XT
(
Id + σ2U + σ2V V T

)−1

X = XTB−1X −XTσ2B−1V (Ir + V TB−1V )V TB−1X,

followed by (68) via defining X̃ = (Id + σ2U)−1/2X and Ṽ = σ(Id + σ2U)−1/2V . bUpsilon

For (69), since
(
B + σ2V V T

)1/2
X = B1/2(Id + Ṽ Ṽ

T
)1/2X̃ . Consider SVD such that Ṽ =

ΥΛ1/2ΓT , where Υ ∈ Rp×r with orthogonal columns, Γ ∈ Rr×r is orthogonal and Λ ∈ Rr×r is a
diagonal matrix. Then since Id + Ṽ Ṽ

T
= Υ(Id +Λ)ΥT + (Ip −ΥΥT ), therefore

(Id + Ṽ Ṽ
T
)1/2 = Id −Υ[Ir − (Ir +Λ)−1/2]ΥT .

Because Υ = Ṽ Λ−1/2ΓT , substitute it into the former equation and notice that Ṽ
T
Ṽ = ΓΛΓT ,

we have
(Id + Ṽ Ṽ

T
)1/2 = Id − Ṽ [(Ir + Ṽ

T
Ṽ )1/2 − Ir](Ṽ

T
Ṽ )−1Ṽ

T
,

Finally, by eigen-decompositions, we have(
Id + σ2U + σ2V V T

)1/2
X = (Id + σ2U)1/2(X + Ṽ Γ{(Λ− Ir)

1/2 − Ir}Λ−1ΓT Ṽ
T
X).
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