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Abstract

Causal inference in settings involving complex spatio-temporal dependencies, such as environmental epidemiol-
ogy, is challenging due to the presence of unmeasured confounding. However, a significant gap persists in existing
methods: current diffusion-based causal models rely on restrictive assumptions of causal sufficiency or static con-
founding. To address this limitation, we introduce the Partially Functional Dynamic Backdoor Diffusion-based Causal
Model (PFD-BDCM), a generative framework designed to bridge this gap. Our approach uniquely incorporates valid
backdoor adjustments into the diffusion sampling mechanism to mitigate bias from unmeasured confounders. Specif-
ically, it captures their intricate dynamics through region-specific structural equations and conditional autoregressive
processes, and accommodates multi-resolution variables via functional data techniques. Furthermore, we provide
theoretical guarantees by establishing error bounds for counterfactual estimates. Extensive experiments on synthetic
data and a real-world air pollution case study confirm that PFD-BDCM outperforms current state-of-the-art methods.

1 Introduction

Causal inference fundamentally addresses interventional (“What if?”) and counterfactual (“Why?”) questions that go
beyond statistical correlations, proving valuable in high-stakes domains like healthcare for treatment effect estimation
(Hill, 2011)), policy evaluation without randomized trials (LaLondel [1986). The field’s core challenge stems from the
fundamental problem of causal inference: the impossibility of simultaneously observing both an outcome under a
treatment and the potential outcomes under the alternative treatment (or control) for the same unit (Imbens and Rubin),
2015), necessitating methods to overcome confounding bias in observational data. Traditional approaches including
potential outcomes frameworks (Imbens and Rubin, [2015), propensity scoring (Rosenbaum and Rubin, [1983)), in-
strumental variables (Angrist et al., [1996)), and structural causal models (Pearl| [2009) exhibit significant limitations
when handling modern complex datasets—they struggle with high-dimensional confounders, ethical constraints of
randomized trials, scarcity of valid instruments, and requirement of known causal graphs. These limitations become
particularly acute when confounders involve high-dimensional data like medical images or partially unobserved vari-
ables (Shalit et al., 2017).

Within the Structural Causal Model (SCM) framework, causal queries can be answered by learning a proxy for
the unobserved exogenous noise and the structural equations (Pearl,[2009). This suggests that (conditional) generative
models that encode to a latent space could be an option for modeling SCMs, as the latent space serves as proxies for
exogenous noises. Recent advances have explored the integration of deep generative models with structural causal
models to address these challenges. [Chao et al.| (2023) proposed the Diffusion-based Causal Model (DCM), which
leverages diffusion processes to approximate structural equations and answer causal queries without explicit interven-
tion data. However, DCM assumes causal sufficiency (no unobserved confounders) which rarely holds in practice.
Shimizu| (2023) extended this line of work with Backdoor Diffusion-based Causal Model (BDCM), incorporating
backdoor adjustment to handle certain types of unmeasured confounding. Nevertheless, both methods operate under
static assumptions and fail to account for spatio-temporal structure in confounding variables, a critical limitation in
real-world systems where confounders often exhibit complex dependencies across space and time.
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To address this gap, we propose the Partially Functional Dynamic Backdoor Diffusion-based Causal Model (PFD-
BDCM), a generative framework capable of explicitly modeling spatiotemporal correlations among unmeasured con-
founders while supporting causal inference. First, it integrates valid backdoor adjustments into the diffusion sampling
mechanism to mitigate bias from unmeasured confounders. Second, it explicitly models the intricate spatio-temporal
dynamics of unmeasured confounders through region-specific structural equations and conditional autoregressive pro-
cesses. Third, it accommodates variables observed at heterogeneous resolutions via functional data techniques and
basis expansions. Furthermore, modeling each node to more accurately address causal inference by leveraging the
superior data generation capability of diffusion models (Song et al., [2021). Our approach relaxes the causal suffi-
ciency assumption and captures dynamic confounding through a structured latent representation, allowing for more
robust estimation of causal effects in non-stationary environments. We demonstrate empirically that PFD-BDCM
outperforms existing diffusion-based causal models across a range of observational, interventional and counterfactual
queries, particularly in settings with spatially and temporally varying confounders.

Our Contributions. We propose a Partially Functional Dynamic Backdoor Diffusion-based Causal Model (PFD-
BDCM) for modeling partially functional spatio-temporal dynamic causal relationships. Diffusion models (Sohl-
Dickstein et al.| [2015; [Ho et al.| [2020; |Song et al.l [2021) have gained prominence due to their high expressiveness
and performance in generative tasks. Our primary contribution is to show how to apply diffusion models to capture
partially functional dynamic causal relationship with unmeasured confounders. The core idea is in modeling each node
in Partially Functional Spatio-Temporal Dynamic Structural Causal Model (PFST-DSCM) with a diffusion model and
cascading the generated samples in the topological order to answer causal queries. For each node, the encoding process
of the diffusion model takes the current node variable and its set of backdoor node variables as input to generate latent
representations of the unobserved exogenous variables, and then reconstructs the current node variable through a
decoding process. Within our framework, the encoding and decoding procedures extend the Denoising Diffusion
Implicit Models (DDIMs) (Song et al., [2021)) paradigm by integrating backdoor adjustment sets as supplementary
covariates. Key contributions of our study include:

(1) [Section[2]] The proposed PFD-BDCM provides a unified framework for approximating both interventions (do-
operator) and counterfactuals (abduction-action-prediction steps). It has a training procedure requiring only the dy-
namic causal graph and observational data, and the trained model enables: i) sampling from observational/interventional
distributions; ii) precise counterfactual query resolution.

(2) [Section[3]] Our theoretical analysis proves that the counterfactual estimates given by PFD-BDCM admit quan-
tifiable error bounds under reasonable assumptions. i) It provides the first formal explanation for the performance
gains of encoder-decoder architectures (e.g., diffusion models) in counterfactual querying through error bounds; ii)
It extends to the more challenging multivariate case under an additional assumption and to diverse encoder-decoder
models.

(3) [Section[d]] We evaluated the performance of PED-BDCM on three synthetic datasets of varying scales involv-
ing spatiotemporal dynamic structural equations and three types of causal queries. Experimental results demonstrate
that PFD-BDCM consistently outperforms existing state-of-the-art methods (Chao et al., 2023} |Shimizul [2023) as well
as PFD-DCM. Furthermore, we also demonstrate the strong performance of PFD-BDCM on a real-world atmospheric
pollution dataset.

2 Methodology

We first introduce some useful notations and concepts.

Notations: To distinguish between the nodes in the causal graph and diffusion random variables, we use subscripts
to denote graph nodes. Let [n] := {1,---,n} and dim(z) represents the dimension of z; let Z}, be the exogenous
noise at diffusion step ¢ in the forward process, with Z, := ZkT, and X + the endogenous variable at step ¢ in the reverse
process, where X}, := X,g.

In causal inference, a confounder denotes a variable that causally influences both a treatment variable X and
an outcome variable Y, thereby inducing a non-causal association between them. (Pearl, 2009). Observable Con-
founders refer to confounders that can be measured, which permit adjustment through statistical methods such as
stratification, matching or regression (Pearl, [2009). Unobservable Confounders denote latent variables that fulfill
confounding criteria but resist direct measurement, which can potentially bias causal estimates when unaccounted for.
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Figure 1: DAG with three nodes (left) and SCM with three exogenous and endogenous nodes (right)

Unobserved explanatory (explained) nodes are unobserved confounder nodes that have no unobserved confounder
nodes as its parent (descendant).

Structural Causal Models. Consider a directed acyclic graph (DAG) (such as Fig. G with nodes [K] in a
topologically sorted order |'| where a node k is built with an endogenous random variable X defined on a space
X, C R%, which has a random exogenous input Uy. Let PA;, be the set of parent nodes of node % in G and let
Xpa, = {Xl}leP Ax be the set of parent random variables of PAg. A structural causal model (SCM) M char-
acterizes the relationship between the endogenous variable X; of a node K with the endogenous variables of its
parents Xpa, and its own exogenous variable U. Formally, we define M := (F(X,U), py), where F(X, U)
specifies how entire endogenous variables X := {X;,--- , X} are generated from the set of exogenous random
variables U := {Uy,--- ,Ug} with a prior distribution py;. The structural mechanism is governed by F(X, U) :=
(f(Xpa,,U1), -, f(Xpa,,Uk)), where each X, := f(Xpa,,Us) for k € [K] (Pearl,2009).

Recent advances in deep learning-based causal inference (Chao et al.| 2023} |Shimizul [2023)), particularly a class
of methods integrating structural causal models (Pearl, |2009) with generative models, have demonstrated the effec-
tiveness of diffusion models for answering causal queries. However, spatial heterogeneity and temporal dependencies
in unmeasured confounders undermine the validity of existing DCMs and BDCMs for genuine causal inference. For
example, in environmental studies, pollution levels may vary significantly across regions (spatial heterogeneity) and
exhibit serial correlation over time (temporal dependence), which standard causal models often fail to capture ade-
quately. To overcome this fundamental limitation, we propose a Spatio-Temporal Dynamic Structural Causal Model
(ST-DSCM) based on the Backdoor Criterion. We commence by establishing several essential definitions. Due to the
complexity of the model, some symbols are mixed up in the article, but the overall readability remains unaffected.

2.1 Partially Functional Spatio-Temporal Dynamic Structural Causal Model

Suppose there is a spatio-temporal dataset X := {X} }1¢[x] containing K variables across n regions over .J time
points. Using ¢ to index regions and j for time points, Xy = (X;;k)nx. represent the value of the k-th variable X
over the time points and regions. We use a DAG to characterize the causal relationships among { X } pe(x]-

Consider a DAG G with nodes [K] and a topologically sorted order such that each node & has the X, as the random
variable. Let C; and C; C [K] be two distinct sets of nodes with unobserved confounders, where C; designates a set
of unobserved explanatory nodes and Cy denotes a set of unobserved explained nodes. For h = 1,2, let X¢, :=
{Xcnijbiem et = {Xaij Yiem jetnaecn Uen = {Ucuij Yiem),jet) = {Uagij Yicin jels).qecs -

To incorporate spatio-temporal dynamic structures among unmeasured confounders, and to account for spatial
heterogeneity, we posit a relationship such that

Xec,ij =TiG (Xey45) + Ucyijs )
where I'; is a dim(X¢,;;) x dim(X¢,;;) structural coefficient matrix, which are permitted to vary across regions;
G() = (g1(.), - ,g4(.))" is ¢ x 1 nonzero vector-valued function with differentiable functions g1, , g, and
q > dim(X¢,;;). And to capture the temporal dependence, we let X¢,; = (Xgli17 e ,XCTIU)T and Uc,; =
(ngil, - 7UCTQZ-J)T, then, the covariance matrices Var(X¢,;) and Var(Uc,;) of X¢,; and U¢,; can be expressed
as

Var(X¢,i) = De,i ® Var(Xc, ), Var(Uc,i) = De,i @ Var(Ug,), 2

where De, ;(h € {1,2}) are the J x J adjacent time covariance matrices, Var(-) represent between-variable covari-
ances. In order to establish a rigorous framework for the temporal adjacency structure, the conditional autoregressive
(CAR) model (Besag, |1974) is adopted with the forms

Dcm = (IJ - pC;LiHChi)_l ) 3)

T'A topological order is a linear arrangement of variables where a variable appears after all its direct causes (parents) (Pearl, [2009)




where pe, ;(h € {1,2}) are adjacent time association parameters, and H¢, ;(h € {1,2}) are J x .J adjacency matrices
in which the element h;; = 1 implies that time [ is adjacent to time j and otherwise hj; = 0.

However, real-world applications often present significant challenges in elucidating causal relationships among
variables observed under heterogeneity. To address these complexities, we extend the ST-DSCM by incorporating
functional random variables X (¢), leading to a Partially Functional Spatio-Temporal Dynamic Structural Causal
Model (PFST-DSCM) ﬂ We adopt a basis expansion framework to achieve dimensionality reduction in the functional
space via a set of orthogonal basis functions {by,--- ,bg, } € RT*Kn Let

Xy = / by (1) X (£) dt @

fori € [n],j € [J],m € [K,], which are used as nodes within the ST-DSCM, and detailed mathematical derivations
are provided in Appendix A.

Notably, our model operates in settings where both observational data and causal structures are available, enabling
it to answer observational, interventional, and counterfactual queries. All parameters in the structural model are
assumed to be known in this context; in practice, they can be estimated using methods from [Song et al|(2012) and
Tang et al.[(2017).

2.2 Partially Functional Dynamic Backdoor Diffusion-based Causal Model

We now present the PFD-BDCM, a model designed to handle causal queries under the PFST-DSCM framework,
which explicitly accounts for unmeasured confounders with spatial heterogeneity and temporal dependence. The
model employs an encoder-decoder architecture to enable causal reasoning across multi-resolution variables.

Let B be the set of backdoor node of k, and X, := {X;}ien, represent the variables on Bj. Here, the
set of parent nodes PAj satisfies the definition of backdoor nodes, that is, PA; C By, we will use By, instead of
PAj. We assume that the unobserved random variables are jointly independent (Markovian SCM), and the Partially
Functional Spatio-Temporal Dynamic Directed Acyclic Graph (PFST-DDAG) G is the graph induced by PEST-DSCM
M. Every PFST-DSCM M entails a unique joint observational distribution satisfying the causal Markov assumption:
p(X) = Ty p(Xk| X5,).

The PFD-BDCM’s data-generating process is formalized as: {Xy, : Xyjx = fij(Xp,, Ug) re[x]- The encoder g
maps (Xj, Xp, ) to a latent variable Zj, := g(Xy, Xp, ), which captures information of the unmeasured confounders
U,.. The decoder h reconstructs X, as Xk = h(Zy,Xpg,). Perfect reconstruction Xk = X, implies that h approxi-
mates the true structural function f. We next detail the architecture and training of PFD-BDCM, and then describe its
use in causal query answering.

Our approach leverages the generative power of diffusion models to learn the complex functional relationships
inherent in a Structural Causal Model. The core idea is to represent the structural equation for each endogenous
variable X}, with a dedicated conditional diffusion model. This model learns the distribution p(Xy|Xpa,,Us) .
Diffusion models (Sohl-Dickstein et al., [2015; [Ho et al., [2020) approximate a target data distribution q(xo) via a
two-stage process. First, a fixed forward process gradually injects Gaussian noise into the data z° over T steps. The
distribution of the noisy data x* at step ¢ is a Gaussian: ¢(z*|2°) = p(z*; \/azz?, (1 — ay)I), where ¢(z; 1, ¥) denote
the Gaussian density with mean g and covariance . Here, oy := Hizl(l — Bs) where S, is a predefined noise
schedule at each time step s. Ast — T', 2T converges to a standard Gaussian distribution. Second, a learnable reverse
process, parameterized by 6, is trained to denoise the data. This is achieved by training a neural network €y to predict
the added noise € using the available observational data. For learning the distribution p(X|Xpa, , Ui ). the network €g
is trained on samples where X, serves as the target variable 2° and Xpa, provides the conditioning context c. Here
0 represents learnable parameters of the neural network, conditioned on the noisy data x?, the step ¢, and the parental
variables contextual information c. The objective function is

Ey 20 c.e [||e — eg(varz® + V1 — aze, ¢, t)||2] . (5)

In our framework, the conditioning context c for a variable X}, is its set of parent variables Xpa, (or Xg, ).

2For example, Figure [2|is a PEST-DSCM with 33 exogenous and endogenous nodes, where nodes X2g, X29 and X3 are unmeasured con-
founders with spatial heterogeneity and temporal dependencies, Y1 (¢), Y2(t), Y3(t) are functional nodes, and X4, - - - , X271 are the corresponding
base expansion nodes.

3 A set of node B satisfies backdoor criterion (Pearl et al.| 2016)) for tuple (X,Y") in DAG G if no node in B is a descendant of X and B blocks
all paths between X (cause) and Y (outcome) which contains an arrow into X.



Although diffusion models excel at data generation, causal inference, especially counterfactual reasoning, requires
a deterministic mapping between observations and latent codes. Denoising Diffusion Implicit Models (DDIMs) (Song
et al., |2021) provide such a deterministic non-Markovian reverse process, a property essential for identifiability. In
PFD-BDCM, we extend DDIM by incorporating backdoor adjustment sets as additional covariates. The resulting
diffusion model for node k is denoted €f (Xy, Xg,,t).

Formally, for each node k € [K], the latent variable Zj, := Z} is generated through the forward implicit diffusion

process
Z]i+1 =1/ at+1/atZ]i+E§(Z};,X3k,t)(\/1 *Oét+1 \/O&t+1 /Oét) (6)

fort = 0,---,T — 1, initialized with Z}) :== Xj,. This latent representation Zj, serves as a proxy for the exogenous
noise Uy. The reconstruction Xy := X is obtained via the reverse implicit diffusion process

Xt = fag_y Jon XL — eE(XL, X, 1) <\/af 1(1— o) /oy — /1T — 1) (N

fort = T,.--,1, initialized with X ,? := Zk. The encoding and decoding functions for node %k are denoted as
Ency,(Xx, Xg,) (Eq. (6)) and Decy(Zy, X, ) (Eq. (7)) respectively, and the pseudocodes are provided in Appendix
B.1.

Training PFD-BDCMs. The comprehensive training methodology (Appendix B.2 Algorithm 3 ) incorporates back-
door adjustment sets as covariates while training distinct diffusion models per node. Crucially, generative models for
endogenous nodes exhibit mutual independence during training, thereby enabling parallelized optimization. This par-
allelism is feasible since each diffusion model necessitates only its target node’s values and corresponding backdoor
adjustment set values. The final PFD-BDCM architecture integrates these K trained diffusion models {e5} ke[K]-

We now elucidate the methodology for leveraging trained PFD-BDCMs to approximate diverse causal queries.
Resolution of observational and interventional queries necessitates sampling from their respective observational and
interventional distributions. Counterfactual queries, however, operate at unit granularity by modifying structural equa-
tion assignments while preserving the latent exogenous noise variables consistent with empirical observations.

Generating samples for observational/interventional queries. To generate samples approximating the interven-
tional distribution p(X|do(X := =)) using a trained PFD-BDCM model, we implement the following procedure: i)
For intervened nodes [ € £, we set X; := v, deterministically; ii) For root nodes &, sample X, from empirical training
distributions; iii) For non-intervened nodes k ¢ £, sample latent vectors Zy, ~ N(0, I, ), where dj, = dim(Xy), and
subsequently compute Xp = Dec(Zy, ng) utilizing inductively generated backdoor variable values ng. Gener-
ated values propagate to child nodes as backdoor inputs. Observational sampling (p(X)) corresponds to £ = (), with
pseudocode formalized in Appendix B.3 (Algorithm 4 ).

Counterfactual Queries. To compute counterfactual estimates X“F within the PFD-BDCM framework, given fac-

tual observation x" := (2¥, ... 2%.) and intervention set £ with values -+, we implement the following systematic
procedure: i) For intervened nodes [ € L, assign 33 =y, deterministically; ii) For non-intervened descendant nodes

k, using inductively generated backdoor estlmates ng, we compute " := Decg(Ency (], x5 ), X5 ), where

factual noise is implicitly encoded. The complete formalization appears in Appendix B.3 (Algorithm 5 ).

3 Counterfactual Error Bounds

In this section, we establish the theoretical guarantees for the counterfactual estimation accuracy of the PFD-BDCM
framework. The primary contribution is the derivation of an error bound that formally links the reconstruction fi-
delity of the encoder-decoder architecture to the precision of its counterfactual predictions. Notably, these theoretical
guarantees accommodate higher-dimensional settings through additional structural assumptions. Formal proofs are
presented in Appendix C.

Consider an endogenous variable X, governed by structural equation Xy, := f;;(X3, , Uy) with backdoor adjust-
ment set X, and exogenous noise Uy. We analyze a single node without loss of generality (by permutation invariance



of nodes), henceforth denoting the target variable as X € X C R, its backdoors as X € X C RX, and exogenous
noise as U. The encoder-decoder architecture comprises

g: X x XAgp — Z (encoding function); h:Z x A - X (decoding function),

where Z denotes the latent space. Within PFD-BDCM, g and h correspond to the Enc and Dec operators, respectively.

Our theoretical results rely on a set of assumptions regarding the structural equation and the encoder-decoder
model. These conditions are essential for ensuring that the latent variable learned by the encoder can uniquely recover
the unobserved exogenous noise, which is the cornerstone of accurate counterfactual estimation (Lu et al.,[2020; Nasr-
Esfahany and Kiciman| 2023} |Nasr-Esfahany et al., |2023). For a variable X € X C R with structural equation
X := f;j(Xg,U) where exogenous noise U ~ N(0,v) and U 1L X, we have the following assumptions:

Assumption 1. The encoded latent variable is independent of the backdoor variables, g(X, Xp) 1L Xz.

Assumption 2. The structural equation f;; is differentiable and strictly increasing with respect to U for all values of
the backdoor variables zz € X.

Assumption 3. The encoding function g is invertible and differentiable with respect to its first argument X for all
rg € Xp.

These assumptions, while formal, are well-motivated in the context of causal inference and deep generative mod-
els. Assumption |1| ensures that the encoder learns a representation of the exogenous noise that is not contaminated
by information from the backdoor variables. This is naturally satisfied in settings like additive noise models with
fij(Xs,U) = f];(Xp) + U where Xp and U is independent. If the fitted model fij = 1;» then g(X, Xp) = U. As-
sumption [2]is satisfied by major identifiable model classes, including additive noise, post-nonlinear, and heteroscedas-
tic formulations (Strobl and Lasko|, |2023) while concurrently resolving symmetric noise ambiguities characteristic of
observational data. This assumption further aligns with contemporary identifiability frameworks (Nasr-Esfahany and
Kiciman, [2023) and intrinsically precludes non-identifiable structural equations. The encoder invertibility condition
(Assumption [3) is intrinsically satisfied by the bijective properties of deterministic diffusion architectures (Song et al.l
2021)), guaranteeing uniqueness in latent representations while preserving compatibility with standard implementa-
tions.

Under these assumptions, we can prove that the encoder successfully isolates the exogenous noise up to an invert-
ible transformation.

Theorem 1. UnderAssumptions and E] the encoded latent variable Z = g(X, Xg) is an invertible transformation
of the true exogenous noise U. That is, there exists an invertible function ¢ such that Z = G(U).

Theorem [I] provides the foundation for assessing the accuracy of counterfactuals given by the PFD-BDCM. It
implies that the abduction step, Enc(X, Xg), correctly captures the essence of the unobserved confounder u that
generated the factual observation. We now explore the direct consequences of this result.

In an oracle scenario where the model achieves perfect reconstruction which means h(g(X, X), X) = X hold-
ing almost surely (a.s.), the counterfactual estimate will be “perfect”. This precise case implies the satisfaction of
Theorem [} yielding the relationship h(G(U), X) = fi;(X5,U). Consequently, when making a counterfactual pre-
diction for a new intervention Xp := +, the model computes h(G(u),y), which a.s. equates to the true counterfactual

fij(vsu).

Corollary 1. Assume Assumptions [Z] and 3| hold and the encoder-decoder model pair (g, h) achieves perfect
reconstruction, i.e., h(g(X, Xg), Xg) = X a.s.. For a factual observation pair (x,xp) generated by x = f;;(xg, u)
and a counterfactual intervention do(Xg := ), the estimated counterfactual 2°Y = h(g(z,x5),~) is a.s. identical
to the true counterfactual Y = fii (v, w).

More practically, models are not perfect. Corollary [2| allows us to bound the counterfactual error by the model’s
reconstruction error. This is a powerful result, as it connects a measurable property of the model (how well it auto-
encodes data) to its performance on a causal task.

Corollary 2. Under Assumptions and |3} if the model’s reconstruction error is bounded by T under a metric d,
such that d(h(g(X, Xg), Xg), X) < 7, then the counterfactual estimation error is also bounded by 7. For a factual
observation (z, ;) and intervention do(Xg := ), we have d(3°Y, %) < 7.
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Figure 2: PFST-DSCM with 33 exogenous and endogenous nodes (where nodes Xog, Xo9 and X3o are unmea-
sured confounders with spatial heterogeneity and temporal dependencies, Y1 (¢), Y2(t), Y3(¢) are functional nodes, and
Xy, -+, X9 are the corresponding base expansion nodes)

This corollary formally establishes that minimizing the reconstruction loss during training directly optimizes the
model for better counterfactual prediction. The framework extends to the more general multivariate setting where
X € RY (Theorem 2 ). This requires a stronger assumption on the encoder’s Jacobian to ensure that information is not
lost in the higher-dimensional space. We present it in Appendix C.

4 Experimental Evaluation

We empirically evaluated the efficacy of PFD-BDCM in addressing causal queries across synthetic and real-world
datasets. To demonstrate that PFD-BDCM faithfully samples from the target interventional distribution, we designed
scenarios where causal sufficiency was deliberately violated within Partially functional structural models.

4.1 Simulation Study

Figure presented the instantiated PFST-DSCM, where causal sufficiency was compromised. Consider { Xog, X29}
as unobserved explanatory variables and X3y as an unobserved explained variable, we assumed exhibit pronounced
spatial heterogeneity coupled with temporal dependence between { Xog, Xog} and X30. Let X7, Xo, X3 represent en-
dogenous cause variables; X351, X392, X33 denote outcome variables; and X g = {Xa9, - - - , Xo7} constitute backdoor
adjustment sets. For visual clarity, exogenous noise terms U were omitted.

The partially functional dynamic structural equations were defined as: X, = f;;(Xpk, Ux) (Eq. (37) in Ap-
pendix D ). The structural equations governing the Partially Functional Dynamic Diffusion-based Causal Model
(PFD-DCM) and PFD-BDCM were instantiated with additive noise models (ANM) (Peters et al., 2013) furnishing
elementary baselines.

Our objective was to accurately sample from the post-interventional distribution ¢(X|do(X; = +;)), where
k € {31,32,33} indexes outcomes and ! € {1, 2, 3} indexes causes. During intervention, X is fixed to 7;, while root
variables X (h =1,--- ,21) were sampled from their empirical marginals F},. For outcome X}, PFD-DCM (DCM)
employed Decy(Z, X 1), whereas PFD-BDCM (BDCM) utilized Decy (Zy, X Bhs X 1), thereby leveraging backdoor
adjustments. Comprehensive simulation setting was detailed in the Appendix D.

Table [T] summarizes aggregated performance metrics-observational (Obs.), interventional (Int.), and counterfac-
tual (CF.)-averaged over nine independent random initializations. Comprehensive diagnostics (boxplots (Fig. 4 and 5
) and kernel density estimates(Fig. 3 )) were provided in Appendix D . PFD-DCM and PFD-BDCM achieved com-
pelling statistical fidelity across all query types, evidenced by MMD for observational/interventional query and MSE



Table 1:

BDCM and DCM compared to the true target distribution (simulation)

Mean + standard deviation of MMD?(x10~3), MSE and Time (seconds) of PFD-BDCM, PFD-DCM,

Causal query J =6  PFD-BDCM PFD-DCM BDCM DCM
n=30 3.616+4.368 4.054+3.585  3.739+3.709 4.934 +4.249
IMMD (Obs.) n =80 1.494-+1.412 1.560+1.300 3.376 +4.936 4.037 +5.191
n=200 0.533+0486 0.737+0.672 3.032+£4.471 3.474 + 4.658
n=30 2.665 2.705 2.660 2.697
|Time (Obs.) n =80 8.837 8.570 8.830 8.566
n =200 15.671 15.309 15.665 15.306
n=30 3.580+3.013 4.282+3.952  3.990 +3.962 3.922 4 3.247
IMMD (Int) n=80 1.408-+1.204 1.511+1.268  2.009+2.052 2.079 + 2.003
n=200 0.595+0504 0.592-+0.582 2.803+3.620 3.187 +3.163
n=30 2291 2.171 2.286 2.165
|Time (Int) n=80 5.997 5.972 5.992 5.969
n =200 15.584 15.565 15.579 15.560
n=30 0835+0259 0.636+0.236 1.936+0.085 1.947 4 0.075
IMSE(CE) n=80 0.645+0.130 0.212+0.055 1.982+0.024 1.980 = 0.027
n =200 0.601+0.089 0.081-+0.020 1.990+0.010 1.992+ 0.013
n=30 1135 1.037 1.136 1.042
|Time (CE) n =80 3.625 3.432 3.812 3.751
n =200 8.616 8.621 8.173 8.023

for counterfactual query. PFD-BDCM consistently outperforms baselines, demonstrating superior MMD metrics in
observational queries and enhanced stability in counterfactual queries under varying data scales. This advantage stems
from its principled integration of backdoor adjustment with spatiotemporal modeling of unobserved confounders,
which mitigates information loss in latent nodes and corrects confounding-induced biases, significantly improving
causal query performance.

4.2 Empirical Application

This investigation employed the PFD-BDCM framework to examine spatio-temporal dynamic structural causal rela-
tionships among air pollutant indicators and their determinants. Our analysis encompassed 30 provincial-level admin-
istrative divisions across Chinese mainland during the period January 2015 to December 2020. The study integrates
China’s provincial CO5 emission inventories from the China Emission Accounts and Datasets (CEADs) (Guan et al.|
2021} Xu et al.| |2024) and emissions data for nine atmospheric pollutants from the Multi-scale Emission Inventory of
China (MEIC) (Li et al.||2019;|Geng et al.,[2024)) as response variables for air pollutant emissions.

Building upon prior research (Ozcan, [2013; Zhu et al., [2021) and incorporating domain-specific characteristics
of regional emissions, we systematically collected foundational determinants across ten conceptual dimensions. The
comprehensive dataset comprised 118 indicator variables, through collinearity diagnostics and random forest-based
feature selection, we retained 49 statistically robust indicators for subsequent modeling (detailed indicators shown
in Appendix D.2 Table 8.Complete experimental specifications and supplementary materials were documented in
Appendix D.2 , with observational query results presented in Table 2.



Table 2: Mean =+ standard deviation of MMD?(x10~2) of PFD-DCM and PFD-BDCM compared to the true target
distribution(Observation query)

Variable PFD-DCM PFD-BDCM Variable PFD-DCM PFD-BDCM
SO, 0.495+0.419 0.51240.476 PM; 0.487 +0.426 0.485 £+ 0.457
NO, 0.511 +0.449 0473 +£0.424 PM;y; 0.400 +0.356 0.435 +0.400
CO 0.564 + 0.531 0.524 +£0.450 BC 0.417 £ 0.406 0.350 £ 0.339
VOC 0.489 + 0.464 0.480+£0.403 OC 0.487 £ 0.462 0.398 £ 0.413
NH; 0.519 £ 0.538 0.494 £0.446 CO, 0.336 £0.257 0.357 £0.304

5 Concluding Remarks

We propose the Partially Functional Dynamic Backdoor Diffusion-based Causal Model (PFD-BDCM), a methodolog-
ical framework crafted for robust causal inference amidst spatial heterogeneity, temporal dependencies, and unmea-
sured confounding. Our contributions are threefold.

Model Innovation: PFD-BDCM synergistically integrates functional basis expansions with diffusion-based causal
modeling, facilitating simultaneous resolution of: i) Multi-resolution variables through partially functional represen-
tations; ii) Spatio-temporal dynamics via regionally parameterized structural equations; iii) Unmeasured confounder
bias utilizing backdoor adjustment sets.

Theoretical Foundation: We establish pioneering error bounds formally connecting counterfactual estimation
accuracy to encoder-decoder reconstruction fidelity under: i) Monotonic structural functional constraints; ii) Invertible
encoding operators; iii)Multivariate generalizations with supplementary structural assumptions.

Empirical Validation: Comprehensive experiments on synthetic and real-world data demonstrate that PFD-
BDCM significantly outperforms existing methods in answering observational, interventional, and counterfactual
queries.

While PFD-BDCM advances causal inference in complex settings, future work should address: i) Scalability
enhancements for ultra-high-dimensional functional data via tensor decomposition; ii) Automated backdoor set iden-
tification through causal discovery algorithms; iii) Temporal graph neural network integration for non-stationary pro-
cesses; iv) Real-time deployment in environmental policy decision support systems.

The proposed framework opens new avenues for causal inference in environmental science, epidemiology, and
econometrics, where functional data and unmeasured confounders are prevalent.
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